
Akademia Górniczo-Hutnicza

im. Stanisława Staszica w Krakowie

Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

KATEDRA AUTOMATYKI

PRACA INŻYNIERSKA

BARTOSZ WITKOWSKI

BUDOWA SOLVERA DLA ROZWIĄZYWANIA PROBLEMÓW
OPTYMALIZACYJNYCH

PROMOTOR:

dr Adam Sędziwy

Kraków 2011

OŚWIADCZENIE AUTORA PRACY

OŚWIADCZAM, ŚWIADOMY ODPOWIEDZIALNOŚCI KARNEJ ZA POŚWIAD-

CZENIE NIEPRAWDY, ŻE NINIEJSZĄ PRACĘ DYPLOMOWĄ WYKONAŁEM

OSOBIŚCIE I SAMODZIELNIE, I NIE KORZYSTAŁEM ZE ŹRÓDEŁ INNYCH

NIŻ WYMIENIONE W PRACY.

. .

PODPIS

AGH

University of Science and Technology in Krakow

Faculty of Electrical Engineering, Automatics, Computer Science and Electronics

DEPARTMENT OF AUTOMATICS

BACHELOR OF SCIENCE THESIS

BARTOSZ WITKOWSKI

BUILDING A SOLVER FOR OPTIMIZATION PROBLEMS

SUPERVISOR:

Adam Sędziwy Ph.D

Krakow 2011

Contents

1 Introduction. 6

2 Background. 7
2.1 Terminology. 7
2.2 Additional definitions. 7
2.3 Optimization. 8

3 Optimization methods. 9
3.1 Mutation operator . 9
3.2 Differential evolution . 9
3.3 Random Optimization. 10
3.4 Harmony Search. 11
3.5 Particle Swarm Optimization . 12
3.6 Cross entropy optimization . 14
3.7 Genetic algorithms . 14
3.8 Simulated annealing . 16
3.9 Taboo search . 17

4 Implementation. 19
4.1 Package structure . 19
4.2 Concurrency . 20
4.3 Algorithms . 20
4.4 Solving optimization problems . 20

5 Benchmarks. 22
5.1 Algorithms and parameters . 22
5.2 Test functions. 23
5.3 Test suite. 30
5.4 Benchmark . 30
5.5 Technical and implementation details. 31

5.5.1 System parameters . 31
5.5.2 Logging . 31

6 Results. 32
6.1 Influence of parameters and algorithm analysis . 32

6.1.1 Algorithm analysis . 32
6.1.2 Parameter influence . 35
6.1.3 Differential Evolution . 36

4

6.1.4 Random Optimization . 39
6.1.5 Harmony Search . 43
6.1.6 Particle Swarm Optimization . 47
6.1.7 Cross Entropy Optimization . 54
6.1.8 Genetic algorithms . 56
6.1.9 Simulated annealing . 64
6.1.10 Taboo search . 68

6.2 The Image From Polygons Problem . 73

7 Conclustions. 75
7.1 Results . 75
7.2 Further Studies . 75
7.3 Log output . 77
7.4 The jgol optimization library . 77

5

Chapter 1

Introduction.

Almost any problem found in everyday life can be thought as an optimization problem, from choosing
a car to finding an extrema of a function - we use the principle of finding a best solution to a problem.

This purpose of this paper is to introduce jgol a optimization library written in java. The
library implements most well known stochastic optimization algorithms: Genetic Algorithms (GAs),
Simulated Annealing (SA), and others more recent, or less popular; the implemented algorithms
are later explored in detail.

In this work we will concentrate on stochastic, black box, heuristic methods of optimization;
the difference between normal and black box optimization methods is that normal methods use
some degree of knowledge about the problem (e.g. the derivative of a function, that a function
is continuous etc.) and black box methods don’t assume any outside knowledge. This additional
knowledge makes traditional optimization methods more powerful but makes them less robust.

Stochastic methods have some degree of randomness when operating: a stochastic strategy of
finding a peek of a hill could sound like: “go a step in a random direction; if you’re standing lower
then you were before - go back - if no take another step”.

Heuristic methods incorporate additional strategies or knowledge to their operation - the al-
gorithms presented here use heuristics that are usually inspired by real-life processes: Genetic
Algorithms are inspired by the process of evolution, Simulated Annealing is inspired by the process
of annealing metals.

In this document we will also look closely at some possible optimization problems and the
behavior of the implemented algorithms trying to solve them - examining the convergence of the
methods used and their speed.

The result of this work include this paper, the optimization library and data collected while
evaluating the test problems.

6

Chapter 2

Background.

2.1 Terminology.

In this document some terms, mostly taken from genetic algorithms and genetic programming
will be used interchangeably with traditional terminology e.g. the term Individual will be used
alongside a variable, fitness function will be used interchangeably with objective function .

This short list will demonstrate the conventions used in this document and the optimization
library.

The function subject to optimization f will be called an objective function or an fitness
function. An element in the domain of f will be called:

• a variable, unknown or a parameter

• a point - in the context of a search spaces

• an individual - particularly used when speaking of genetic algorithms

An individual is composed of decision variables, or genes. A population is a collection of
individuals.

2.2 Additional definitions.

To help define optimization methods, some most common operators and conventions held through-
out this document will be introduced:

We define:

• r(a, b) as operator returning a random uniformly distributed value between a (inclusive), and
b (exclusive), i.e: a ≤ r(a, b) < b, and no value is more probable then another.

• rn(µ, σ) as operator returning a random normal distributed value with the given expected
value µ and the standard deviation σ

The nullary operators r() and rn() return an uniform random value, or a normally distributed
random value respectively, so that the values fit the constraints of current context.

7

2.3 Optimization.

Optimization is a process of finding a extrema of a function: given a set X and a function f defined
on X we need to find a minimal (maximal) value of f(x), x : x ∈ X.

We will call f an objective function, and the set X a search space:

f : X → Y

where Y is any arbitrary set. The process of optimization is the problem of finding:

x∗ = min
x∈X

f(x)

or alternatively:
x∗ = max

x∈X
f(x)

8

Chapter 3

Optimization methods.

In this chapter the optimization methods implemented in the library will be summarized. The
algorithms are stochastic in nature and most of them are based on some real life analogy, or are
inspired by some real life process.

When describing the algorithms we assume maximization of the fitness function – if f(a) > f(b)
then a is more fit (better) then b.

3.1 Mutation operator

We begin by introducing a simple mutation operator used in most algorithms. mut(x, δ) is defined
as follows:
Require: x be a vector of the size N
i← r(1, N)
xi ← ±r(0, 1) · δ
return x

Where the parameter δ is understood as the mutation strength.

3.2 Differential evolution

Differential evolution is a evolutionary algorithm created by Price and Stern intended to optimize
real-parameter functions.

Differential evolution works on the analogy of a search space. The algorithm starts by randomly
assigning positions in the search space to the population. On each iteration of the algorithm two
“temporary” populations are produced - the mutant vectors and the trial vectors.

A single mutant vector is formed by a special differential operator. This operator differentiates
the DE from other EAs. The vector is formed by taking three random positions from the population
- the difference of two of them scaled by a scaling factor F is added to the remaining one: vi =
xR1 +F · (xR2 −xR3). In terms of the search space: a vector was added to a point. Some additional
restrictions are put on the indexes: R1 6= R2 6= R3 6= i.

The trial vectors are formed by crossing over the mutant vectors with individuals from the
population. Additionally, at least one gene is taken from the mutant vector to ensure that some
crossover took place.

Finally, if the trial vector is better then the corresponding individual in the population - it takes
its place in the population.

9

Formal definition of the algorithm: let f : Rn → R be the fitness function subject to optimization
- N being the dimensionality of the problem.

We define Npop as the size of the population, and x1 . . . xNpop ∈ RN as the population to improve.
v′1 . . . v

′
Npop

- as “mutant vectors”, and u1 . . . uNpop “trial vectors” – posible candidates for the next
population.

Additional parameters: a scaling factor F ∈ [0, 2], and a cutoff rate CR ∈ (0, 1] .
for i = 1 to Npop do
xi ← [r(), r(), . . . , r()]︸ ︷︷ ︸

N
end for
while not terminationCriterion() do

for i = 1 to Npop do
R1 ← r(1, Npop)
R2 ← r(1, Npop)
R3 ← r(1, Npop)
vi ← xR1 + F · (xR2 − xR3)

end for
for i = 1 to Npop do

for j = 1 to N do
if r(0, 1) ≤ CR then
ui,j ← vi,j

else
ui,j ← xi,j

end if
end for

end for
for i = 1 to Npop do

if f(ui) < f(xi) then
x′i ← ui

else
x′i ← xi

end if
end for

end while
For clarity, ensuring that R1 6= R2 6= R3 6= i was ommited.

3.3 Random Optimization.

Random optimization is an iterative optimization method for single objective, numerical prob-
lems. The algorithm starts by assigning uniformly random values to an individual. In each iteration
the individual is then changed by adding a normally distributed vector to it; the resulting individual
stays changed only if it is better than the source individual.

Let f : RN → R be the fitness function subject to optimization, N being the dimensionality of
the problem. Let x ∈ RN be a position in the search space. The algorithm can be described as:
x← [r(), r(), . . . , r()]︸ ︷︷ ︸

N

while not terminationCriterion() do

10

x′ ← x+ [rn(), rn(), . . . , rn()]︸ ︷︷ ︸
N

if f(x′) > f(x) then
x← x′

end if
end while
Because the values of an individual may be constrained, we will consider four strategies when

dealing with situations where one or more genes don’t fit in the constraints.

• Dropping the individual altogether - the algorithm leaves the old value of the individual.

• Dropping only the offending gene - the old gene is left.

• Trimming the gene to the constraint - trimming either to the left or right value of the con-
straint.

• Bounce back. If gmin and gmax are the minimum and maximum values of the gene then

while not inConstraints(g) do
if g > gmax then
g ← gmax − |g − gmax|

else
g ← gmin + |gmin − g|

end if
end while

3.4 Harmony Search.

Harmony Search is a type of Evolutionary Algorithm inspired by the process of improvising
jazz musicians.

Consider a band practicing improvisation over chord changes of a song. The overall available
harmony can be imagined as a search space of some problem. Better sounding harmonies are fitter
(in the sense of an fitness function) then bad ones.

Each musician represents a decision variable; at each and every practice session (an iteration of
the algorithm) the musician generates some new note (a value of the decision variable).

When practicing, musicians either make something up as they play along (representing a ran-
domly created value), or use/modify some note that they’ve found good in the previous practice
session (the concept of the Harmonic Search Memory)

Notes are taken out of the memory with some given probability P (chooseFromMemory) and can
be modified according to some probability P (pitchAdjust).

We additionally define:

• MS as the memory size

• memory as the harmony search memory – the memory should be at all times sorted so that

∀i = 1 . . . N − 1 : f(memoryi) ≥ f(memoryi+1)

• δ as the pitch adjustment strength

11

• N as the size of the decision variable

• f() as the fitness function.

• memoryMS as the worst element from memory (according to the fitness function).

for i = 1 to MS do
memoryi ← [r(), r(), . . . , r()]︸ ︷︷ ︸

N
end for
while not terminationCriterion() do

for i = 1 to N do
if r(0, 1) ≤ P (chooseFromMemory) then
x← memory (r(0, N))
x′i ← x+ rn()
if r(0, 1) ≤ P (pitchAdjust) then
xi ← mut(xi, δ)

end if
else
x′i ← r()

end if
end for
if f(x′) > f(memoryMS) then
memoryMS ← x′

end if
end while
In the jgol optimization library and when analyzing the algorithm memory is understood as the

problems population, with population size equal to MS

3.5 Particle Swarm Optimization

Particle Swarm Optimization is a optimization algorithm that tries to simulate swarming/social
behavior of agents (particles). A single particle in this scheme is a solution candidate “flying”
through the search space with some velocity. The particle also remembers its best position and can
learn the best position known to its neighbor particles.

While traveling the search space the particles adjust their speed (both direction and value) based
on their personal experiences and on the knowledge of their neighborhood particles.

Various schemes of determining particle neighborhood can be imagined we will discern:

• the global neighborhood - all particles are neighbors to each other.

• the neighborhood determined by euclidean distance.

• the neighborhood determined by normalized euclidean distance.

The normalization process tries to adjust the size of the neighborhood so that the dimension of
the search space is accounted for.

The algorithm can be described as:
x0...Npop ← [r(), r(), . . . r()]︸ ︷︷ ︸

N

12

v0...Npop ← [r(), r(), . . . r()]︸ ︷︷ ︸
N

while not terminationCriterion() do
for i = 1 to Npop do

for j = 1 to N do
φ1 ← r(0, 1)
φ2 ← r(0, 1)
v′ij ← ωvij + σ (φ1 · C1 · (best(pi)j − xij) + φ2 · C2 · (bestNhood(pi)j − xij))

end for
if v′ > vmax then
v′ ← vmax

end if
if v′ < −vmax then
v′ ← −vmax

end if
x′i ← xi + v′i

end for
x← x′

v ← v′

end while
Where:

• Npop is the size of the population.

• N is the number of dimensions of the search space.

• x is a vector of particle positions.

• v is a vector of particle velocities (each velocity is a vector with N elements).

• vmax is a maximum posible velocity.

• ω is the velocity-weight or inertia factor - how much the particle will base its next velocity on
its previous one.

• σ is the position weight determining the importance of the particles position to the next
particle velocity.

• φ1,2 are a uniform random variables taken as an additional weight when determining the next
particle velocity.

• C1 is the self confidence weight (or self learning rate).

• C2 is the swarm confidence weight (or neighborhood learning rate).

• bestNhood(p) is an operator that returns the best (most fit) position known to the particle and
its neighborhood.

• best(p) is an operator that returns the most fit position that the particle has visited.

13

3.6 Cross entropy optimization

The Cross entropy optimization consists of two steps:

• Generating a sample population from a distribution.

• Updating the parameters of the random mechanism to produce a better (fitter) sample in the
next population.

This behavior conceptually substitutes the problem of finding a optimal individual to a problem
of iteratively finding a random distribution that generates good individuals.

We use a random Gaussian distribution to produce variables; the distribution is improved by
means of importance sampling and finding a new distribution from the best samples.

Let N be the number of dimensions of the search space, Nsize be the sample size. x1 . . . xN
denotes the population (in terms of optimization not a statistical population) the size of N , we
assume that the population is sorted so that

∀i = 1 . . . N − 1 : f(xi) ≥ f(xi+1)

We define:

• mean(x,Nsample) = 1
Nsample

Nsample∑
i=0

xi

• stddev(x,Nsample) =

√√√√ 1
Nsample

n∑
i=0

(xi −mean(x,Nsample))2

Because x is a vector of values mean(x) and stddev(x) work on a set of vectors and return a
vectors of elements – a vector of means and standard deviations of columns of the given input matrix
(population). Additional importance sampling with the size of Nsample was done to the given set.

The algorithm can be described as:
x0...Npop ← [r(), r(), . . . r()]︸ ︷︷ ︸

N

µ← mean(x,Nsample)
σ ← stddev(x,Nsample)
while not terminationCriterion() do

for i = 1 to Npop do
xi ← [rn(µ1, σ1), rn(µ2, σ2), . . . , rn(µN , σN)]︸ ︷︷ ︸

N
end for
µ← mean(x,Nsample)
σ ← stddev(x,Nsample)

end while
Additionally the values of µ and σ can be smoothed over time (from iteration to iteration) to

improve the algorithm convergence.

3.7 Genetic algorithms

Genetic algorithms are nature inspired algorithms that simulate sexual reproduction of species
and a “survival of the fittest” approach to evolution.

14

Elements of the search space X are encoded as strings of genes. The first GAs used binary
strings to represent individuals; although, the particular implementation of genetic algorithms in
the library is encoding agnostic, real valued genes were used for encoding.

Creation - the individuals are usually created by assigning random values to their genes, such
a population can be imagined as a primordial soup. The population progresses iteratively by
reproducing either asexually by mutation only or sexually by means of crossover.

Mutation - Individuals mutate if one (or more) of their genes changes randomly by either
flipping a bit in binary encoded chromosomes, adding a random value to real/integer encoded
genes, changing the order of genes in the individual etc – because the implicitly the individuals are
encoded as vectors of real values we use the previously defined mutation operator mut(x, δ).

Crossover - crossover or recombination is a binary operator that tries to mimic biological
reproduction and crossover. The operator swaps the genes from two individuals of the population
(parents) producing new individuals (children). There are many schemes of crossover, some of
theme are:

• one point crossover where a point is chosen at random in the parents gene-strings, genes
up to that point are taken from the first parent, the rest from the second.

• two point crossover identical to one point crossover - only two points are chosen. Genes
are taken from the first parent then the second then then first once again.

• uniform crossover where the likelihood that a gene will be taken from any parent is the
same.

Traditionally crossover took two parent individuals and produced two children individuals, pro-
ducing only one child is also acceptable. Crossover from many parents is possible with the uniform
crossover operator.

Selection - the selection process in genetic algorithms determines which individuals survive and
mate producing offspring (by mutation or crossover). Some selection operators:

• Best selection - N best individuals from the population are selected.

• Random selection - N random individuals from the population are selected.

• Roulette selection - also known as fitness proportional selection - in this scheme of more fit
individuals are more likely to be selected.

This is usually done by calculating the total fitness of individuals in the population totalF it,
sorting the population, and assigning “spaces” on the roulette wheel so that the fittest indi-
vidual “occupies” the space between 0 and f(x1), the second f(x1) to f(x1) + f(x2) and so
on.

A number between 0 and totalF it is generated - the number determines which individual is
selected. This process can be imagined as spinning a roulette wheel with the size of the fields
corresponding to the fitness of individuals of the population.

This is done so that N individuals are selected.

• Top percent selection - N individuals are selected at random from the given top t ∈ (0, 100)
percent individuals of the population.

• Tournament selection - selects N individuals by holding a tournament.

A tournament is done by taking tsize individuals from the population at random and selecting
the best individual from the tournament.

15

Let N be the dimensionality of the problem, Npop be the size of the population, Ng the number
of genes n a individual, x1 . . . xNpop the populationl

selN (x) is the operator representing the selection method - returning N selected individual,
cross(xi1 , xi2) the crossover method, and mut(xi, δ) the mutation operator defined previously.

Parameters:

• P (m) the probability that the offspring will be mutated.

• P (c) the probability that the offspring will be crossed.

for i = 1 to Npop do
xi ← [r(), r(), . . . r()]︸ ︷︷ ︸

N
end for
while not terminationCriterion() do

for i = 1 to Npop do
parents← sel2(x)
if r(0, 1) ≤ P (c) then
child← cross(parents1, parents2)

else
if r(0, 1) ≤ 0.5 then
child← parents1

else
child← parents2

end if
end if
if r(0, 1) ≤ P (m) then
child← mut(child, δ)

end if
x′i ← child

end for
x← x′

end while
The algorithm implicitly handles sorting; the details of the selection and crossover operators

were omitted for brevity sake.

3.8 Simulated annealing

Simulated annealing is a probabilistic optimization method inspired by the physical process of
annealing metals - where a metal is slowly cooled so that its structure is “frozen” in a minimal
energy configuration. [2]

The algorithm itself is similar to hill climbing: an individual will iteratively go to a better
neighbourhood position (picked at random), additionally an individual may go to a worse position
with a probability proportional to its temperature.

The probability that a individual will go to a worse position is calculated by the Boltzmann

probability factor e
−E(pos)

kT
B . Where E(pos) is the energy at the new position (calculated as a differ-

ence of fitness two positions), kB is the Botzmann constant (1.380650524 · 10−23J/K), and T is the
temperature of the “solid”.

16

The rate at which the solid is frozen is called a cooling schedule. We will explore two variants
of cooling schedules:

•
getTemperature(t) = Tstart · (at)

Where Tstart is the starting temperature, t is the current iteration, and a is a parameter of
the cooling schedule. Additionally: a > 0 ∧ a ≈ 0.

•
getTemperature(t) = Tstart · (1− ε)t/m

Where Tstart is the starting temperature, t is the current iteration. ε and m are parameters
of the cooling schedule. Additionally 0 < ε ≤ 1.0

The algorithm itself can be summarized as:
x← [r(), r(), . . . r()]︸ ︷︷ ︸

N
xbest ← x
while not terminationCriterion() do
x′ ← mut(x, δ)
∆E ← f(x)− f(x′)
if ∆E ≤ 0 then
x← x′

if f(x) > f(xbest) then
xbest ← x

end if
else
T ← getTemperature(t)

if r(0, 1) < exp

(
∆E
kB

t

)
then

x← x′

end if
end if
t← t+ 1

end while
Where f is the objective function f : RN → R, and mut(x, δ) is the mutation operator, and δ

the mutation strength parameter.

3.9 Taboo search

Taboo search is a search method that retains the memory of visited points in the search space
called a taboo list which are not visited again.

We will consider only one individual, but the algorithm holds for entire populations (if applied
to every individual in the population). Additional operators:

• mut(x, δ) denotes the mutation operator defined before, and δ the mutation strength param-
eter.

• initializeTaboo() initializes the taboo list.

17

• isTaboo(x) checks if a individual is taboo, we introduce two variants

1. We compare individuals from the taboo list with the given individual gene by gene. We
say that a individual is taboo if all genes of the given individual are the same as one of
the individuals of the taboo list.

2. We compare individuals using clustering - the given individual is taboo if it is close (in
some measure of closeness - Euclidean distance) to any individual in the taboo list.

• updateTaboo(x) updates the taboo list with the given individual, and removes the oldest
entry of the list when some capacity limit is encountered.

x← r()
initializeTaboo()
while not terminationCriterion() do
x′ ← mut(x, δ)
if not isTaboo(x′) then

if f(x′) > f(x) then
x← x′

end if
updateTaboo(x′)

end if
end while

18

Chapter 4

Implementation.

The Java Generic Optimization Library or jgol implements the described optimization meth-
ods. The library is divided into packages and is may be distributed as a jar file, the library uses
Jakarta Commons Chains – for the ,,Chain of responsibility” pattern, and an Mersenne twister
random generator implementation by Sean Luke, held in a separate package.

4.1 Package structure

jgol
<<package>>

lib
<<package>>

impl
<<package>>

algorithm
<<package>>

representation
<<package>>

problem
<<package>>

util
<<package>>

Figure 4.1: The library package structure.

The most important packages in the library are:

• jgol.lib.algorithm – holding the implementations of the algorithms, and the abstract base
class Algorithm.

• jgol.lib.problem – which stores the problem specific classes – the abstract class Fitness
that classes implementing a fitness function must extend, the abstract Gene class, an abstract
FitnessType class – the fitness type returned by the fitness function, and most importantly
the abstract Problem class which defines an optimization problem.

• jgol.lib.representation – storing the Individual and Population classes.

19

• jgol.lib.util – utility classes.

4.2 Concurrency

The library provides its own internal Producer–Consumer mode of concurrency with abstract Work
classes done by the WorkerThreads – implementations of the Consumer pattern.

4.3 Algorithms

Algorithm CrossEntropyOptimizationAlgorithm

DifferentialEvolutionAlgorithm

HarmonySearchAlgorithm

PsoAlgorithm

RandomOptimization

SimulatedAnnealingAlgorithm

TabooSearchAlgorithm

Figure 4.2: Algorithms.

Every algorithm must extend the abstract Algorithm class, and implement the iterate() method
specific to some algorithm. For the sake of simplicity and ease of concurrency the implementations
of this method are purely functional.

4.4 Solving optimization problems

To solve an optimization problem the user of the library must create an concrete instance of the
Problem class, additionally setting an concrete GeneFactory – an implementation of the Factory
Method pattern, and a FitnessFunction returning some FitnessType class.

The Problem class then creates an initial Population which is iterated by an instance of a
Algorithm.

20

Population

Individual

Gene

AlgorithmInfo

FitnessType

1

1..*

1

0..*

1

1..*

1

0..1

Figure 4.3: Population anatomy.

21

Chapter 5

Benchmarks.

According to the ,,No Free Lunch Theorem”[6] any two algorithms A and B on average perform
identically; consequently, devising an test suite which determines which algorithm is better for any
function is impossible.

Nevertheless, we can devise a benchmark which will evaluate problems judging them by some
degree of performance; algorithms will be compared using the following criteria:

• How fast (in terms of real time) the implementation of an algorithm finds a known optima ,
or how fast it improves its best known solution in some particular optimization problem.

• How many evaluations of the fitness function it took to find the best solution.

• If the algorithms deteriorates when given problems with more dimensions.

• Whether the algorithms find the best solution .

5.1 Algorithms and parameters

The following algorithms will be evaluated by the test suite.

• Differential Evolution Algorithm for population size PS ∈ {5, 25, 100, 250, 500},
f ∈ {0.0, 0.2, 0.4}, cutoff ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

• Random Optimization for PS ∈ {1}, µ ∈ {−0.1,−0.01, 0.0, 0.01, 0.1},
σ ∈ {0.001, 0.01, 0.1, 0.5, 0.7, 1.0, 3.0} and four constraint strategies.

• Harmony Search for PS ∈ {5, 25, 75, 100}, P (chooseFromMemory) ∈ {0.7, 0.845, 0.99},
P (pitchAdjust) ∈ {0.1, 0.3, 0.5}, δ ∈ {0.1, 0.5, 1.0}

• Particle Swarm Optimization for PS ∈ {10, 30, 60}, v ∈ {−3.0,−1.5, 0.0, 1.5, 3.0} self
learning rate ∈ {0.0, 2.0, 4.0} neighborhood learning rate ∈ {2.0, 4.0} for global, and
local neighborhoods; additionally, for local neighborhoods neighborhood size ∈ {0.1, 0.5}
(normalized and not). The position weight σ was set at 1.0, a maximum velocity vmax was
set at 1.0.

• Cross Entropy Optimization for population size PS ∈ {50, 100, 250, 500, 750, 1000} and
with the importance sampling size Nsample ∈ 0.1PSi, 0.2PSi, 0.5PSi, 0.7PSi, where PSi is the
current population size.

22

Searching with PS < 50 was deemed not feasible - experiments showed that CE doesn’t work
well with small populations.

• Genetic Algorithms for elisimSize = 0 and PS ∈ {10, 25, 50, 100}, selectionMethod =
tournament, tournamentSize ∈ {2, 6}, parentCount ∈ {2, 4}, crossoverMethod ∈ { one
point, uniform }
Due to time constrains some combinations of parameters were not tested for elisimSize = 2.

• Simulated Annealing for step ∈ {0.1, 0.2, 0.4, 0.6, 1.0}, and two variants of cooling sched-
ules:

– Geometric for Tstart ∈ {2000, 5000, 10000, 20000}, a ∈ {0.99, 0.999, 0.9999, 0.99999}
– “VariantI” for Tstart ∈ {2000, 5000, 10000, 20000}, m ∈ {5, 100} ε ∈ {0.1, 0.001}

• Taboo Search for step ∈ {0.1, 0.2, 0.4, 0.6, 1.0}, taboo size ∈ {10, 100, 500, 1000, 10000},
clustering and non-clustering taboo, cluster size ∈ {0.001, 0.01, 0.1, 0.25, 0.5}

5.2 Test functions.

We will use the following convention for discerning test functions 1–5:

fNn : RN → R

Where N is the dimensionality of the problem, and n is a reference number.

1. Minimization of the Sphere Function:

fN1 (x) =
N∑
i=1

x2
i

• Search domain: |xi| < 5.12, i = 1, 2, . . . N

• Global minimum: x∗ = (0, . . . , 0), f(x∗) = 0

• No local minima besides the global minimum.

23

-6 -4 -2 0 2 4 6 -6
-4

-2
0

2
4

6

0
10
20
30
40
50
60

x1

x2

0
10
20
30
40
50
60

Figure 5.1: f2
1 (x)

2. Minimization of the Rosenbrock Function:

fN2 (x) =
N−1∑
i=1

[
100(x2

i − xi+1)2 + (xi − 1)2
]

• Search domain: |xi| < 5.12, i = 1, 2, . . . N

• Global minimum: x∗ = (1, . . . , 1), f(x∗) = 0

• Several local minima.

24

-6 -4 -2 0 2 4 6 -6
-4

-2
0

2
4

6

0100002000030000400005000060000700008000090000100000

x1

x2

0
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000

Figure 5.2: f2
2 (x)

0.6 0.8 1 1.2 1.4
x1

0.6

0.8

1

1.2

1.4

x
2

0

50

100

150

200

250

300

350

Figure 5.3: f2
2 (x) near the global minimum (1, 1)

3. Minimization of the Step Function:

fN3 (x) =
N∑
i=1

bxic

25

• Search domain: |xi| < 5.12, i = 1, 2, . . . N

• Global minima: x∗ : xi ≤ −5, f(x∗) = −6N , i = 1, 2, . . . N

• No local minima besides the global minimum.

-6 -4 -2 0 2 4 6 -6
-4

-2
0

2
4

6

-15
-10
-5
0
5

10

x1

x2

-15
-10
-5
0
5
10

Figure 5.4: f2
3 (x)

4. Minimization of the Rastrigin Function:

fN4 (x) = 10N +
N∑
i=1

(x2
i − 10 cos(2πxi))

• Search domain: |xi| < 5.12, i = 1, 2, . . . N

• Global minimum: x∗ = (0, . . . , 0), f(x∗) = 0

• Several local minima.

26

-6 -4 -2 0 2 4 6 -6
-4

-2
0

2
4

6

0
10
20
30
40
50
60
70
80

x1

x2

0
10
20
30
40
50
60
70
80

Figure 5.5: f2
4 (x)

5. Minimization of the Griewank Function:

fN5 (x) =
N∑
i=1

x2
i

4000
−

N∏
i=1

cos
(
xi√
i

)
+ 1

• Search domain: |xi| ≤ 600, i = 1, 2, . . . N .

• Global minimum: x∗ = (0, . . . , 0), f(x∗) = 0.

• Several local minima.

27

-60 -40 -20 0 20 40 60-60
-40

-20
0

20
40

60

0
0.5

1
1.5

2
2.5

3
3.5

x1

x2

0
0.5
1
1.5
2
2.5
3
3.5

Figure 5.6: f2
5 (x)

6. Minimization of the Easom Function:

f6(x1, x2) = −cos(x1)cos(x2)e−(x1−π)2−(x2−π)2 , xi : |xi| ≤ 100

• Number of variables: 2

• Search domain: |xi| < 100, i = 1, 2

• Global minimum: x∗ = (π, π), f(x∗) = −1

• No local minima besides the global minimum.

28

-15 -10 -5 0 5 10 15 20 -15-10-5 0 5 101520

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1

x1

x2

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0
0.1

Figure 5.7: f6(x1, x2)

1 2 3 4 5 1
2

3
4

5

-1
-0.8
-0.6
-0.4
-0.2

0
0.2

x1

x2

-1
-0.8
-0.6
-0.4
-0.2
0
0.2

Figure 5.8: f6(x1, x2) near the global optimum (π, π)

7. Image from polygons.

The problem of finding the best combination of N semitransparent colored D–gons (100 ≤
N ≤ 1000, 3 ≤ D ≤ 10) that when rendered will produce an image I, so that the difference

29

between the rendered image and the given one is minimized.

The polygons are encoded so that each polygon is represented by 2D + 4 real numbers 0 ≤
xi ≤ 1, and the first 2D values correspond to the positions of the points of the polygon. The
last four values correspond the RGBA (Red, Green, Blue and Alpha).

Given the encoding {0, 0, 0, 1, 1, 0, 1, 0, 0, 0.5} and an input image I with the width of wI and
height hI the encoded polygon will render to a fully red triangle with 50% alpha formed with
by points (0, 0), (0, hI), (wI , 0).

fN,D,I7 (x) =
wI∑
i=1

hI∑
j=1

(I(i, j)− I ′(i, j))2

• Large number of variables: 1000 – 14000

• Search domain: 0 ≤ xi < 1, i = 1, 2, . . . N · (2D + 4)

• Unknown global minimum.

• Unknown quantity of local minima.

5.3 Test suite.

The test suite consists of:

• fNi (x) for i ∈ {1, 2, 3, 4, 5} N ∈ {2, 4, 8, 14, 20, 32, 44, 54, 76, 98, 120, 148}

• f6(x)

• fN,D,I1,27 (x) for N = 150, D = 6

Figure 5.9: The tests images: I1 and I2

5.4 Benchmark

We will evaluate the optimization methods against the test suite, keeping track of:

• 1. the amount of iterations

2. time – real time spent on optimizing

30

3. amount of evaluations of the fitness function

• For test functions 1 – 6: the distance to the know optimum.

5.5 Technical and implementation details.

5.5.1 System parameters

The tests were done on a Intel Core 2 Duo CPU T9400 running at 2.53GHz on Ubuntu Karmic
Koala Linux with a 2.6.31-22-generic kernel on a x86 64 architecture under normal system load;
java -version reports:

Java(TM) SE Runtime Environment (build 1.6.0_20-b02)
Java HotSpot(TM) 64-Bit Server VM (build 16.3-b01, mixed mode)

5.5.2 Logging

The Log class created for is called every iteration of the algorithm and keeps track how much time
has passed between its calls. Log entries are buffered and, as a compromise between efficiency and
memory usage, are written to the hard drive from time to time; time spent on writing the log is
taken into ignored so that it doesn’t corrupt the results.

For the sake of hard drive space, repeated values of the solution are omitted – only improve-
ments of the current solution are logged.

The stopping criteria for algorithms are as follows:

• Time spent on optimizing exceeded 5 minutes.

In problems 1–6:

• The best found solution x is within ε = 10−4 of the know optimum.

• The algorithm hasn’t improved the population for more then 1000 iterations.

For the “Image from polygons” problem:

• The algorithm hasn’t improved the population for more then 100 iterations.

The population is not improved if:

Table 5.1: Improvement measures.
Algorithm Improvement measure

Random Optimization No individual in the population was improved.
Taboo Search

Harmony Search
Differential Evolution

Cross–Entropy Optimization The fitness of the mean individual was not improved
Particle Swarm Optimization The best found solution was not improved.

Genetic Algorithm
Simulated Annealing

The test were repeated five times and averaged so that bad/good starting values may be taken
into account.

31

Chapter 6

Results.

6.1 Influence of parameters and algorithm analysis

The conclusions and statistics presented here may only hold true for the given optimization prob-
lems, especially when ranking which algorithm is the best. Nevertheless, some insights and “rules
of a thumb” may be gathered by looking at the performances of the algorithms and their settings;
heuristics can be made about “good” values of the algorithm parameters.

Some parameters and settings that were not tested and could possibly influence the performance
of the algorithms.

• Encoding methods (especially for genetic algorithms)

• Different selection schemes for genetic algorithms.

• Different stopping criteria.

• Different implementations of the mutation operator.

• Topologies in the Particle Swarm Optimization algorithm.

• Adaptive algorithms - especially adaptive cooling schedules for the Simulated Annealing
algorithm.

• Code-optimization, profiling and the influence of parallelism on the algorithms.

Additionally, the tested parameters constitute only a small subset of the possible range of the
available parameters.

6.1.1 Algorithm analysis

The tests provided a large data set – the algorithms were run on 63 problems, 61 of which were
numerical optimization problems - and will be examined first.

Most algorithms faired well when solving most given optimization problems, the only problems
for which no solution was found were the Rosenbrock function optimization problem for dimensions
144 and 120.

The algorithms will be compared by average proximity to a known optimum – this gives a good
performance measure that scales well for different problems and varying number of dimensions.
Additional performance measures will be introduced when analyzing parameter influence.

32

Variants of the Differential evolution algorithm scored best by a large degree, but on average
were not better than all algorithms excluding Particle Swarms and Random Optimization.

The DEs were among the most robust – variants of the Differential evolution algorithm were
more likely to find an optimum then any other algorithm.

algorithm name proximity s. time.percentage n eval
DA (f = 0.2, cutoff = 0.1) PS = 100 53.48 2609.48 26.52 184940273.00
DA (f = 0.2, cutoff = 0.1) PS = 250 54.49 3114.65 31.66 155036916.00
DA (f = 0.2, cutoff = 0.1) PS = 500 56.40 3815.92 38.79 116247759.00
DA (f = 0.4, cutoff = 0.9) PS = 250 60.45 2455.16 24.96 104865895.00
DA (f = 0.2, cutoff = 0.3) PS = 100 68.69 2214.95 22.51 138700727.00

Table 6.1: Global top 5 algorithms (by proximity).

33

CE DA GA HS PS RO SA TS

Mean proximity (smaller is better, logscale)

algorithms

pr
ox

im
ity

10
0

20
0

50
0

10
00

20
00

50
00

10
00

0

best
all
worst

Figure 6.1: Algorithm performance – for every algorithm three sets were taken into account - five
best variants of the algorithm, all variants of the algorithm and five worst variants. Proximities of
those sets were then averaged.

Algorithm robustness

Robustness was measured by comparing the best found values of each algorithm variant to a know
optimum. If the best found solution was withing ε = 10−3 to a known optimum the algorithm found
a solution. All variants (sets of parameters) of an algorithm were scored this way.

34

CE DA GA HS PS RO SA TS

Algorithm robustness

Algorithms

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

0
5

10
15

20
25

30

Figure 6.2: Algorithm robustness.

6.1.2 Parameter influence

When examining the influence of parameters three parameters will be compared:

1. Mean sum of proximities to the optimum of algorithms in numerical problems.

2. Mean sum of milliseconds that the algorithm has needed to stop.

3. Summed average (mean) count of fitness function evaluations.

The first parameter tells us about the mean convergence of a set of algorithms, the second and
third tell about the speed of convergence.

35

Care must be taken to ensure that the second and third parameters are not taken into account
by their own as they don’t differentiate between fast run times due to failure and slow convergence
to the optimum. Those parameters are helpful when examining two (or more) sets of parameters
with similar proximity/convergence.

Where not stated explicitly it is implied that the influence of parameters is understood in terms of
average performance (time, objective function evaluation count). Consequently, some combinations
of parameters, although bad on average, may by among the best. Additionally, when speaking of
algorithm speed we mean both real time spent optimizing, and the number of evaluations done,
unless explicitly stated otherwise.

6.1.3 Differential Evolution

The Differential Evolution algorithm showed the best performance compared to other algorithms
when considering only numerical optimization – globally the five best algorithms are DEs.

On average convergence improved when increasing the population size, with small differences in
convergence speed (both real time, and the count of fitness function evaluations).

On average from the chosen scaling factor f seems to work best for f = 0.4, and worst for
f = 0.0. There were slight variations in time for f = 0.2 and f = 0.4.

On average the smaller values of the cutoff factor worked best both in terms of convergence and
convergence speed.

f cutoff population size Proximity Time [s] Time [%] n-eval
0.2 0.1 100 53.48 2609.48 26.52 184940273
0.2 0.1 250 54.49 3114.65 31.66 155036916
0.2 0.1 500 56.40 3815.92 38.79 116247759
0.4 0.9 250 60.45 2455.16 24.96 104865895
0.2 0.3 100 68.69 2214.95 22.51 138700727

Table 6.2: Best five settings (by proximity) for the Differential Evolution algorithm. Time [s]
denotes time in ms spent on optimizing, and Time [%] is the time spent relative to the worst
runtime. n-eval is the number of evaluations of the fitness function.

36

5 25 100 250 500

Mean proximity (smaller is better)

population size

P
ro

xi
m

ity

0
50

00
10

00
0

15
00

0

5 25 100 250 500

Mean time (smaller is better, logscale)

population size

pr
ox

im
ity

/m
s

2e
+

03
5e

+
03

2e
+

04
5e

+
04

2e
+

05
5e

+
05

2e
+

06

5 25 100 250 500

Mean n−eval (smaller is better, logscale)

population size

pr
ox

im
ity

/n
_e

va
l

1e
+

05
5e

+
05

5e
+

06
5e

+
07

Figure 6.3: Parameter influence – population size

37

0.0 0.2 0.4

Mean proximity (smaller is better)

f

P
ro

xi
m

ity

0
20

00
40

00
60

00
80

00

0.0 0.2 0.4

Mean time (smaller is better, logscale)

f

pr
ox

im
ity

/m
s

1e
+

05
2e

+
05

5e
+

05
1e

+
06

2e
+

06

0.0 0.2 0.4

Mean n−eval (smaller is better, logscale)

f

pr
ox

im
ity

/n
_e

va
l

5e
+

06
1e

+
07

2e
+

07
5e

+
07

1e
+

08

Figure 6.4: Parameter influence – the scaling factor f

38

0.1 0.3 0.5 0.7 0.9

Mean proximity (smaller is better)

cutoff

P
ro

xi
m

ity

0
20

00
40

00
60

00

0.1 0.3 0.5 0.7 0.9

Mean time (smaller is better, logscale)

cutoff

pr
ox

im
ity

/m
s

16
00

00
0

18
00

00
0

20
00

00
0

22
00

00
0

24
00

00
0

26
00

00
0

0.1 0.3 0.5 0.7 0.9

Mean n−eval (smaller is better, logscale)

cutoff

pr
ox

im
ity

/n
_e

va
l

8.
0e

+
07

1.
0e

+
08

1.
2e

+
08

1.
4e

+
08

1.
6e

+
08

Figure 6.5: Parameter influence – cutoff

6.1.4 Random Optimization

For the given optimization problems and for the tested parameter values Random Optimization
was among the worst algorithms tested. As figure 6.1 shows its mean performance is among the
three worst, and the worst variants of Random Optimization behaved the worst globally. The
algorithm also showed the lowest robustness.

Among the five best settings (6.3) the stddev was universally set to 3.0, and the constraint
strategy used was either trimming or dropping a genome.

With the best set of parameters of the Random Optimization algorithm gave acceptable
performance. On average, the constraint strategy used had no effect on convergence – the algorithm
converged to a solution quicker (both real time and in terms of objective function evaluation counts)

39

when dropping the individual, the bounce back strategy was the second best in terms of speed.
The algorithm was influenced heavily by the set mean value – best performance was noted when

µ = 0.0.
Bigger values of the standard deviation parameter stddev were proportionally better in the range

tested – both in terms of convergence and convergence speed.

µ σ constraint strategy Proximity Time [s] Time [%] n-eval
-0.1, 3.0 trim 1447.41 5.92 0.06 110601
0.1 3.0 trim 1447.46 6.35 0.06 115453

-0.01 3.0 trim 1447.94 5.92 0.06 112283
0.0 3.0 trim 1460.75 5.69 0.06 106811

-0.01 3.0 drop gene 1466.08 8.03 0.08 127311

Table 6.3: Best five settings (by proximity) for the Random Optimization algorithm. Time
[s] denotes time in ms spent on optimizing, and Time [%] is the time spent relative to the worst
runtime. n-eval is the number of evaluations of the fitness function.

40

trim drop gene bounce back drop individual

Mean proximity (smaller is better)

constraints

P
ro

xi
m

ity

0
20

00
40

00
60

00
80

00

trim drop gene bounce back drop individual

Mean time (smaller is better, logscale)

constraints

pr
ox

im
ity

/m
s

11
50

00
12

00
00

12
50

00
13

00
00

trim drop gene bounce back drop individual

Mean n−eval (smaller is better, logscale)

constraints

pr
ox

im
ity

/n
_e

va
l

17
00

00
0

17
50

00
0

18
00

00
0

19
00

00
0

Figure 6.6: Parameter influence – constraint strategy

41

−0.1 −0.01 0.0 0.01 0.1

Mean proximity (smaller is better)

mean

P
ro

xi
m

ity

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

−0.1 −0.01 0.0 0.01 0.1

Mean time (smaller is better, logscale)

mean

pr
ox

im
ity

/m
s

10
00

00
15

00
00

20
00

00
30

00
00

40
00

00

−0.1 −0.01 0.0 0.01 0.1

Mean n−eval (smaller is better, logscale)

mean

pr
ox

im
ity

/n
_e

va
l

1e
+

06
2e

+
06

5e
+

06

Figure 6.7: Parameter influence – mean

42

0.0010 0.01 0.1 0.5 0.7 1.0 3.0

Mean proximity (smaller is better)

stddev

P
ro

xi
m

ity

0
50

00
10

00
0

15
00

0
20

00
0

0.0010 0.01 0.1 0.5 0.7 1.0 3.0

Mean time (smaller is better, logscale)

stddev

pr
ox

im
ity

/m
s

1e
+

04
2e

+
04

5e
+

04
1e

+
05

2e
+

05

0.0010 0.01 0.1 0.5 0.7 1.0 3.0

Mean n−eval (smaller is better, logscale)

stddev

pr
ox

im
ity

/n
_e

va
l

1e
+

05
2e

+
05

5e
+

05
1e

+
06

2e
+

06
5e

+
06

Figure 6.8: Parameter influence – stddev

6.1.5 Harmony Search

Among the tested algorithms Harmony Search ranks low both performance-wise and in terms of
robustness. As table 6.4 shows the best settings for HS all had P (chooseFromMemory) = 0.99 a
low pitch adjustment probability - either 0.1 or 0.3 and each had adjustment strenght = 0.1.

The best variants of the Harmony Search were only better then Simulated Annealing
and Random Optimization; on average the performance of HS is on par with the average
performances of Particle Swarms and Random Optimization

The algorithm behaves better with increasing population sizes but at a cost of convergence
speed.

On average, higher values of the P(chooseFromMemory) parameter were proportionally better

43

in terms of convergence.
On average, lower values of the P(adjustPitch) parameter were proportionally better in terms

of convergence, as is the case with the pitch adjustment strength pitchAdjust parameter.

algorithm name proximity s. time.percentage n eval
HS (chooseMemP = 0.99, adjustP = 0.1, adjustStr = 0.1) PS = 100 640.27 1778.35 18.08 6236538.00
HS (chooseMemP = 0.99, adjustP = 0.1, adjustStr = 0.1) PS = 75 671.16 1204.16 12.24 5039876.00
HS (chooseMemP = 0.99, adjustP = 0.1, adjustStr = 0.1) PS = 25 906.34 310.52 3.16 2141347.00
HS (chooseMemP = 0.99, adjustP = 0.1, adjustStr = 0.1) PS = 5 1256.81 78.89 0.80 753533.00
HS (chooseMemP = 0.99, adjustP = 0.3, adjustStr = 0.1) PS = 100 1580.20 1042.29 10.59 4196919.00

Table 6.4: Top 5 algorithms settings (by proximity).

5 25 75 100

Mean proximity (smaller is better)

population

P
ro

xi
m

ity

0
20

00
40

00
60

00
80

00
10

00
0

5 25 75 100

Mean time (smaller is better, logscale)

population

pr
ox

im
ity

/m
s

2e
+

04
5e

+
04

1e
+

05
2e

+
05

5e
+

05

5 25 75 100

Mean n−eval (smaller is better, logscale)

population

pr
ox

im
ity

/n
_e

va
l

2e
+

05
5e

+
05

1e
+

06
2e

+
06

Figure 6.9: Parameter influence – population size

44

0.7 0.845 0.99

Mean proximity (smaller is better)

P(chooseFromMemory)

P
ro

xi
m

ity

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

0.7 0.845 0.99

Mean time (smaller is better, logscale)

P(chooseFromMemory)

pr
ox

im
ity

/m
s

30
00

00
35

00
00

40
00

00
45

00
00

0.7 0.845 0.99

Mean n−eval (smaller is better, logscale)

P(chooseFromMemory)

pr
ox

im
ity

/n
_e

va
l

12
00

00
0

14
00

00
0

16
00

00
0

18
00

00
0

20
00

00
0

Figure 6.10: Parameter influence – P (chooseFromMemory)

45

0.1 0.3 0.5

Mean proximity (smaller is better)

P(pitchAdjust)

P
ro

xi
m

ity

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

0.1 0.3 0.5

Mean time (smaller is better, logscale)

P(pitchAdjust)

pr
ox

im
ity

/m
s

30
00

00
35

00
00

40
00

00
45

00
00

0.1 0.3 0.5

Mean n−eval (smaller is better, logscale)

P(pitchAdjust)

pr
ox

im
ity

/n
_e

va
l

12
00

00
0

14
00

00
0

16
00

00
0

18
00

00
0

20
00

00
0

Figure 6.11: Parameter influence – P (adjustP itch)

46

Parameter influence – pitch adjustment strength δ

0.1 0.5 1.0

Mean proximity (smaller is better)

adjustStr

P
ro

xi
m

ity

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

0.1 0.5 1.0

Mean time (smaller is better, logscale)

adjustStr
pr

ox
im

ity
/m

s

30
00

00
35

00
00

40
00

00
45

00
00

0.1 0.5 1.0

Mean n−eval (smaller is better, logscale)

adjustStr

pr
ox

im
ity

/n
_e

va
l

14
00

00
0

15
00

00
0

16
00

00
0

18
00

00
0

20
00

00
0

6.1.6 Particle Swarm Optimization

Globally the best versions of Particle Swarms ranked fourth best in terms of convergence, but
the algorithm noted a very poor performance on average and in terms of robustness. The amount
of parameters to tune to in PSO is staggering and finding better combinations may give better
performance.

As table 6.5 shows the best settings for PSO all had the biggest population size = 60, self
learning rate = neighborhood learning rate = 4.0, the velocity weight was also universally = 1.5.

In terms of convergence, bigger population sizes behave slightly better – but at a huge cost of
convergence speed.

Among the tested values of the velocity weight parameter two values 1.5, and 3.0 are better by

47

a big margin from the rest when comparing convergence. Convergence speed between those two
parameters is comparable with a faster convergence with velocity weight = 3.0.

The self learning rate parameter made very small difference in terms of convergence, although,
convergence speed was faster for self learning rate = 2.0 in terms of real time. For self learning rate
= 4.0 the algorithm made substantially less evaluations of the fitness function.

On average, the neighborhood learning rate also had almost no influence on convergence; for
neighborhood learning rate = 4.0 the algorithm converged faster (both in terms of speed, and function
evaluation count).

On average, the algorithm preformed substantially better with global neighborhood type in
terms of convergence and real time convergence speed.

For the local neighborhood neighborhood size had almost no influence on convergence, con-
vergence speed however was fastest for the 0.1 unnormalized neighborhood size.

type ω δ vmax C1 C2 neighborhood size population size Proximity Time [s] Time [%] n-eval
local 1.5 1.0 1.0 4.0 4.0 0.1 NORM 60 406.49 595.19 6.05 6206750

global 0.0 1.0 1.0 4.0 4.0 N/A 60 409.24 64.86 0.66 2810075
local 1.5 1.0 1.0 4.0 4.0 0.5 NORM 60 411.63 575.08 5.85 6053185
local 1.5 1.0 1.0 4.0 4.0 0.5 60 424.08 574.93 5.84 6019809
local 1.5 1.0 1.0 4.0 4.0 0.1 60 430.71 582.53 5.92 6266220

Table 6.5: Best five settings (by proximity) for the Particle Swarm Optimization algorithm.
Time [s] denotes time in ms spent on optimizing, and Time [%] is the time spent relative to the
worst runtime. n-eval is the number of evaluations of the fitness function.

48

10 30 60

Mean proximity (smaller is better)

population

P
ro

xi
m

ity

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

10 30 60

Mean time (smaller is better, logscale)

population

pr
ox

im
ity

/m
s

2e
+

04
5e

+
04

1e
+

05
2e

+
05

10 30 60

Mean n−eval (smaller is better, logscale)

population

pr
ox

im
ity

/n
_e

va
l

10
00

00
0

15
00

00
0

25
00

00
0

35
00

00
0

Figure 6.12: Parameter influence – population size

49

−3.0 −1.5 0.0 1.5 3.0

Mean proximity (smaller is better)

velocity weight

P
ro

xi
m

ity

0
50

00
10

00
0

15
00

0

−3.0 −1.5 0.0 1.5 3.0

Mean time (smaller is better, logscale)

velocity weight

pr
ox

im
ity

/m
s

50
00

0
10

00
00

15
00

00
20

00
00

−3.0 −1.5 0.0 1.5 3.0

Mean n−eval (smaller is better, logscale)

velocity weight

pr
ox

im
ity

/n
_e

va
l

20
00

00
0

22
00

00
0

24
00

00
0

28
00

00
0

Figure 6.13: Parameter influence – velocity weight

50

0.0 2.0 4.0

Mean proximity (smaller is better)

self learning weight

P
ro

xi
m

ity

0
20

00
40

00
60

00
80

00
10

00
0

0.0 2.0 4.0

Mean time (smaller is better, logscale)

self learning weight

pr
ox

im
ity

/m
s

13
00

00
13

50
00

14
00

00
14

50
00

15
00

00

0.0 2.0 4.0

Mean n−eval (smaller is better, logscale)

self learning weight

pr
ox

im
ity

/n
_e

va
l

20
00

00
0

22
00

00
0

24
00

00
0

26
00

00
0

Figure 6.14: Parameter influence – self learning rate

51

2.0 4.0

Mean proximity (smaller is better)

neighborhood learning weight

P
ro

xi
m

ity

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

2.0 4.0

Mean time (smaller is better, logscale)

neighborhood learning weight

pr
ox

im
ity

/m
s

15
50

00
16

00
00

16
50

00
17

00
00

2.0 4.0

Mean n−eval (smaller is better, logscale)

neighborhood learning weight

pr
ox

im
ity

/n
_e

va
l

22
00

00
0

24
00

00
0

26
00

00
0

28
00

00
0

Figure 6.15: Parameter influence – neighborhood learning rate

52

local global

Mean proximity (smaller is better)

neighborhood type

P
ro

xi
m

ity

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

local global

Mean time (smaller is better, logscale)

neighborhood type

pr
ox

im
ity

/m
s

60
00

0
80

00
0

10
00

00
12

00
00

14
00

00

local global

Mean n−eval (smaller is better, logscale)

neighborhood type

pr
ox

im
ity

/n
_e

va
l

23
00

00
0

24
00

00
0

25
00

00
0

26
00

00
0

27
00

00
0

Figure 6.16: Parameter influence – neighborhood type

53

0.1 0.5 0.1 NORM 0.5 NORM

Mean proximity (smaller is better)

neighborhood size for local neighborhoods

P
ro

xi
m

ity

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0

0.1 0.5 0.1 NORM 0.5 NORM

Mean time (smaller is better, logscale)

neighborhood size for local neighborhoods

pr
ox

im
ity

/m
s

15
00

00
15

50
00

16
00

00
16

50
00

17
00

00

0.1 0.5 0.1 NORM 0.5 NORM

Mean n−eval (smaller is better, logscale)

neighborhood size for local neighborhoods

pr
ox

im
ity

/n
_e

va
l

20
00

00
0

22
00

00
0

24
00

00
0

26
00

00
0

28
00

00
0

30
00

00
0

Figure 6.17: Parameter influence – neighborhood size (for local neighborhoods)

6.1.7 Cross Entropy Optimization

Cross entropy optimization turned out to have very high robustness, but a less then perfect
performance. The best five settings (6.6) show mostly low importance sampling size (10% and 20%)
and big population sizes - more then 500.

On average the convergence of the Cross Entropy method increased with the size of the
population, although with diminishing returns.

The best value for the importance sampling size parameter was 0.5.

54

Nsample population size Proximity Time [s] Time [%] n-eval

100 (10%) 1000 429.74 995.78 10.12 37714318
75 (10%) 750 456.66 737.72 7.50 28922034
50 (10%) 500 536.78 502.20 5.10 19439294
200 (20%) 1000 632.96 784.56 7.97 34206016
150 (10%) 750 661.56 591.07 6.01 25073451

Table 6.6: Best five settings (by proximity) for the Cross Entropy Optimization algorithm.
Time [s] denotes time in ms spent on optimizing, and Time [%] is the time spent relative to the
worst runtime. n-eval is the number of evaluations of the fitness function.

50 100 250 500 750 1000

Mean proximity (smaller is better)

population

P
ro

xi
m

ity

0
50

0
10

00
15

00
20

00

50 100 250 500 750 1000

Mean time (smaller is better, logscale)

population

pr
ox

im
ity

/m
s

2e
+

04
5e

+
04

1e
+

05
2e

+
05

5e
+

05

50 100 250 500 750 1000

Mean n−eval (smaller is better, logscale)

population

pr
ox

im
ity

/n
_e

va
l

1e
+

06
2e

+
06

5e
+

06
1e

+
07

2e
+

07

Figure 6.18: Parameter influence – population size

55

0.1 0.2 0.5 0.7

Mean proximity (smaller is better)

importance sampling size (factor of population size)

P
ro

xi
m

ity

0
20

0
40

0
60

0
80

0
10

00

0.1 0.2 0.5 0.7

Mean time (smaller is better, logscale)

importance sampling size (factor of population size)

pr
ox

im
ity

/m
s

20
00

00
25

00
00

30
00

00
35

00
00

40
00

00

0.1 0.2 0.5 0.7

Mean n−eval (smaller is better, logscale)

importance sampling size (factor of population size)

pr
ox

im
ity

/n
_e

va
l

8.
0e

+
06

1.
0e

+
07

1.
2e

+
07

1.
4e

+
07

1.
8e

+
07

Figure 6.19: Parameter influence – importance sampling size

6.1.8 Genetic algorithms

Globally, Genetic Algorithms ranked second, GA proved to be robust, had very good mean
performance (second to Taboo Search) and with a mediocre worst-case performance. As table 6.7
shows the best parameter settings used the biggest possible population size = 100, a hight mutation
size = 1.0 and a low mutation rate = 0.1. When using uniform selection 6 parents were preferred.

On average, Genetic Algorithms improved as the population size increased, though with
diminishing returns. On average convergence was better with elitism size = 2, and with a higher
population size. GAs behaved better with a lower mutation rate and mutation size.

The crossover method had almost no influence on convergence, although convergence speed was
faster in terms of real time spent for 1-Point crossover; in terms of number objective function

56

invocations the Uniform crossover was substantially faster.
For uniform crossover the traditional – parent count = 2 worked slightly better but with a slower

convergence.

e
li
ti

sm
si

z
e

se
le

c
ti

o
n

ty
p

e

p
a
re

n
t

c
o
u
n
t

to
u
rn

a
m

e
n
t

si
z
e

c
ro

ss
o
v
e
r

ty
p

e

c
ro

ss
o
v
e
r

ra
te

m
u
ta

ti
o
n

si
z
e

m
u
ta

ti
o
n

ra
te

p
o
p
u
la

ti
o
n

si
z
e

P
ro

x
im

it
y

T
im

e
[s

]

T
im

e
[%

]

n
-e

v
a
l

0 Tournament 2 6 Uniform 1.0 1.0 0.1 100 143.87 1345.87 13.68 93640410.00
2 Tournament 2 6 1-Point 1.0 1.0 0.1 100 151.26 970.70 9.87 97679415.00
2 Tournament 2 2 1-Point 1.0 1.0 0.1 100 153.64 992.40 10.09 98365619.00
2 Tournament 2 2 Uniform 1.0 1.0 0.1 100 154.38 1390.46 14.13 98081846.00
0 Tournament 2 6 1-Point 1.0 1.0 0.1 100 155.28 942.75 9.58 94673075.00

Table 6.7: Top 5 algorithms settings (by proximity).

57

10 25 50 100

Mean proximity (smaller is better)

population

P
ro

xi
m

ity

0
20

0
40

0
60

0
80

0
10

00
12

00

10 25 50 100

Mean time (smaller is better, logscale)

population

pr
ox

im
ity

/m
s

2e
+

05
4e

+
05

6e
+

05
8e

+
05

10 25 50 100

Mean n−eval (smaller is better, logscale)

population

pr
ox

im
ity

/n
_e

va
l

1e
+

07
2e

+
07

5e
+

07
1e

+
08

Figure 6.20: Parameter influence – population size

58

0 2

Mean proximity (smaller is better)

elistism size

P
ro

xi
m

ity

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

0 2

Mean time (smaller is better, logscale)

elistism size

pr
ox

im
ity

/m
s

4e
+

05
5e

+
05

6e
+

05
7e

+
05

8e
+

05

0 2

Mean n−eval (smaller is better, logscale)

elistism size

pr
ox

im
ity

/n
_e

va
l

3e
+

07
4e

+
07

5e
+

07
6e

+
07

Figure 6.21: Parameter influence – elitism

59

2 6

Mean proximity (smaller is better)

tournament size

P
ro

xi
m

ity

0
20

0
40

0
60

0
80

0
10

00

2 6

Mean time (smaller is better, logscale)

tournament size

pr
ox

im
ity

/m
s

50
00

00
55

00
00

60
00

00
65

00
00

2 6

Mean n−eval (smaller is better, logscale)

tournament size

pr
ox

im
ity

/n
_e

va
l

3.
5e

+
07

4.
0e

+
07

4.
5e

+
07

5.
0e

+
07

Figure 6.22: Parameter influence – tournament size

60

0.1 1.0

Mean proximity (smaller is better)

mutation rate

P
ro

xi
m

ity

0
50

0
10

00
15

00

0.1 1.0

Mean time (smaller is better, logscale)

mutation rate

pr
ox

im
ity

/m
s

4e
+

05
5e

+
05

6e
+

05
7e

+
05

0.1 1.0

Mean n−eval (smaller is better, logscale)

mutation rate

pr
ox

im
ity

/n
_e

va
l

3e
+

07
4e

+
07

5e
+

07
6e

+
07

Figure 6.23: Parameter influence – mutation rate

61

0.1 1.0

Mean proximity (smaller is better)

mutation size

P
ro

xi
m

ity

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

0.1 1.0

Mean time (smaller is better, logscale)

mutation size

pr
ox

im
ity

/m
s

4e
+

05
5e

+
05

6e
+

05
7e

+
05

0.1 1.0

Mean n−eval (smaller is better, logscale)

mutation size

pr
ox

im
ity

/n
_e

va
l

2.
5e

+
07

3.
0e

+
07

3.
5e

+
07

4.
5e

+
07

5.
5e

+
07

Figure 6.24: Parameter influence – mutation rate

62

1−Point Uniform

Mean proximity (smaller is better)

crossover method

P
ro

xi
m

ity

0
20

0
40

0
60

0
80

0

1−Point Uniform

Mean time (smaller is better, logscale)

crossover method

pr
ox

im
ity

/m
s

52
00

00
53

00
00

54
00

00
55

00
00

56
00

00
57

00
00

58
00

00

1−Point Uniform

Mean n−eval (smaller is better, logscale)

crossover method

pr
ox

im
ity

/n
_e

va
l

3.
5e

+
07

4.
0e

+
07

4.
5e

+
07

5.
0e

+
07

Figure 6.25: Parameter influence – crossover method

63

2 4

Mean proximity (smaller is better)

parent count

P
ro

xi
m

ity

0
20

0
40

0
60

0
80

0

2 4

Mean time (smaller is better, logscale)

parent count

pr
ox

im
ity

/m
s

48
00

00
50

00
00

52
00

00
54

00
00

56
00

00
58

00
00

2 4

Mean n−eval (smaller is better, logscale)

parent count

pr
ox

im
ity

/n
_e

va
l

3.
5e

+
07

4.
0e

+
07

4.
5e

+
07

Figure 6.26: Parameter influence – parent count (with uniform crossover)

6.1.9 Simulated annealing

Simulated Annealing showed very stable performance with worst case convergence close to best
case convergence - for the given problems it was also fourth best in terms of robustness. Nevertheless
the best case performance was surprisingly low - second worst. In the five best algorithm settings
(table 6.8) no cooling schedule seemed to dominate, but the mutation step was universally equal to
0.2.

On average the best performance was for mutation step = 0.2, the fastest rate of convergence
was observed for mutation step = 0.4.

From the two cooling schedules both gave equal performance with the Geometric cooling schedule
having a slightly faster real time speed of convergence.

64

The starting time Tstart also had almost no influence on the convergence with a faster convergence
rate for Tstart = 5000.0

mutation size cooling schedule Proximity Time [s] Time [%] n-eval
0.2 Geometric(Tstart = 20000.0, a = 0.999) 1245.23 9.65 0.10 379681.00
0.2 VariantI (Tstart = 5000.0, m = 5, eps = 0.0010) 1247.30 9.58 0.10 376341.00
0.2 VariantI (Tstart = 10000.0, m = 100, eps = 0.0010) 1257.54 9.47 0.10 369863.00
0.2 Geometric(Tstart = 10000.0, a = 0.99999) 1258.24 9.45 0.10 373114.00
0.2 VariantI (Tstart = 2000.0, m = 5, eps = 0.0010) 1263.64 9.70 0.10 380673.00

Table 6.8: Best five settings (by proximity) for the Simulated Annealing algorithm. Time [s]
denotes time in ms spent on optimizing, and Time [%] is the time spent relative to the worst
runtime. n-eval is the number of evaluations of the fitness function.

65

0.1 0.2 0.4 0.6 1.0

Mean proximity (smaller is better)

step

P
ro

xi
m

ity

0
50

0
10

00
15

00

0.1 0.2 0.4 0.6 1.0

Mean time (smaller is better, logscale)

step

pr
ox

im
ity

/m
s

85
00

90
00

95
00

10
00

0
10

50
0

0.1 0.2 0.4 0.6 1.0

Mean n−eval (smaller is better, logscale)

step

pr
ox

im
ity

/n
_e

va
l

32
00

00
34

00
00

36
00

00
38

00
00

40
00

00

Figure 6.27: Parameter influence – mutation step size

66

Geometric VariantI

Mean proximity (smaller is better)

cooling scheme

P
ro

xi
m

ity

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

Geometric VariantI

Mean time (smaller is better, logscale)

cooling scheme

pr
ox

im
ity

/m
s

90
00

92
00

94
00

96
00

98
00

Geometric VariantI

Mean n−eval (smaller is better, logscale)

cooling scheme

pr
ox

im
ity

/n
_e

va
l

35
00

00
36

00
00

37
00

00
38

00
00

Figure 6.28: Parameter influence – cooling schedule

67

2000.0 5000.0 10000.0 20000.0

Mean proximity (smaller is better)

starting temperature

P
ro

xi
m

ity

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

2000.0 5000.0 10000.0 20000.0

Mean time (smaller is better, logscale)

starting temperature

pr
ox

im
ity

/m
s

90
00

92
00

94
00

96
00

98
00

2000.0 5000.0 10000.0 20000.0

Mean n−eval (smaller is better, logscale)

starting temperature

pr
ox

im
ity

/n
_e

va
l

35
00

00
36

00
00

37
00

00
38

00
00

Figure 6.29: Parameter influence – starting temperature Tstart

6.1.10 Taboo search

The very simple Taboo Search method overall ranked third in best-case performance and ranked
first in terms of both mean and worst case performance, it’s robustness was on par with the Simu-
lated Annealing method. As the five best settings show 6.9 no other value then 0.2 for mutation
step was noted, and there seems to be no preferred taboo size.

On average, the best convergence was observed for mutation step sizes 0.2 and 0.4 with a
faster real time convergence speed for the value 0.2. For mutation step = 0.2 the amount of
evaluations was also lower but not significantly.

Increasing the taboo size slightly reduced the convergence of the algorithm, the real time speed
of convergence was proportionally slower for bigger sizes.

68

Bigger taboo sizes decreased the fitness function evaluation count, although there was almost
no significant difference between taboo size 10 and 100, or taboo size 500 and 1000.

Using clustering decreased the convergence, and slowed convergence speed, when using clustering
cluster sizes {0.001, 0.01, 0.1} behaved had similarly in terms of convergence with convergence speed
proportionally slower as the cluster size increased.

taboo size mutation size cluster size Proximity Time [s] Time [%] n-eval
100 0.2 0.001 186.92 35.13 0.36 930640
500 0.2 N/A 193.24 83.62 0.85 986095
10 0.2 0.01 195.54 17.56 0.18 712367

10000 0.2 N/A 198.17 2612.56 26.55 1023093
1000 0.2 N/A 198.71 140.22 1.43 996131

Table 6.9: Best five settings (by proximity) for the Taboo Search algorithm. Time [s] denotes
time in ms spent on optimizing, and Time [%] is the time spent relative to the worst runtime. n-eval
is the number of evaluations of the fitness function.

69

0.1 0.2 0.4 0.6 1.0

Mean proximity (smaller is better)

step

P
ro

xi
m

ity

0
10

0
20

0
30

0
40

0
50

0

0.1 0.2 0.4 0.6 1.0

Mean time (smaller is better, logscale)

step

pr
ox

im
ity

/m
s

26
00

00
28

00
00

30
00

00
32

00
00

0.1 0.2 0.4 0.6 1.0

Mean n−eval (smaller is better, logscale)

step

pr
ox

im
ity

/n
_e

va
l

46
00

00
48

00
00

50
00

00
52

00
00

54
00

00
56

00
00

Figure 6.30: Parameter influence – mutation step size

70

10 100 500 1000 10000

Mean proximity (smaller is better)

taboo size

P
ro

xi
m

ity

0
50

10
0

15
0

20
0

25
0

30
0

35
0

10 100 500 1000 10000

Mean time (smaller is better, logscale)

taboo size

pr
ox

im
ity

/m
s

2e
+

04
5e

+
04

1e
+

05
2e

+
05

5e
+

05
1e

+
06

10 100 500 1000 10000

Mean n−eval (smaller is better, logscale)

taboo size

pr
ox

im
ity

/n
_e

va
l

54
00

00
56

00
00

58
00

00
60

00
00

Figure 6.31: Parameter influence – taboo size

71

true false

Mean proximity (smaller is better)

clustering

P
ro

xi
m

ity

0
50

10
0

15
0

20
0

25
0

30
0

35
0

true false

Mean time (smaller is better, logscale)

clustering

pr
ox

im
ity

/m
s

30
00

00
35

00
00

40
00

00
45

00
00

50
00

00

true false

Mean n−eval (smaller is better, logscale)

clustering

pr
ox

im
ity

/n
_e

va
l

5e
+

05
6e

+
05

7e
+

05
8e

+
05

9e
+

05

Figure 6.32: Parameter influence – clustering

72

Parameter influence – cluster size

0.0010 0.01 0.1 0.25 0.5

Mean proximity (smaller is better)

cluster size

P
ro

xi
m

ity

0
10

0
20

0
30

0
40

0
50

0

0.0010 0.01 0.1 0.25 0.5

Mean time (smaller is better, logscale)

cluster size
pr

ox
im

ity
/m

s

20
00

00
25

00
00

30
00

00
35

00
00

45
00

00

0.0010 0.01 0.1 0.25 0.5

Mean n−eval (smaller is better, logscale)

cluster size

pr
ox

im
ity

/n
_e

va
l

3e
+

05
4e

+
05

5e
+

05
6e

+
05

7e
+

05

6.2 The Image From Polygons Problem

The results for the “Image From Polygons” toy problem were a little different then the results
in the numerical problems – and the differences may hint how the algorithms deteriorate with an
extremely large dimension count but the results cannot be conclusive.

• The Genetic Algorithms scored best with Differential Evolution second.

• Performance of the Cross Entropy Optimization suffered having the worst best case per-
formance of all algorithms.

73

• The Simulated Annealing behaves more gracefully with a third best performance globally
with Taboo Search coming fourth.

• Relative performance of the Harmony Search algorithm was lower – second worst with
Random Optimization taking third worst.

CE DA GA HS PS RO SA TS

Mean fitness (smaller is better, logscale, absolute values)

algorithms

fit
ne

ss

5.
0e

+
08

1.
0e

+
09

1.
5e

+
09

2.
0e

+
09

best
all
worst

Figure 6.33: Algorithm ranking for the image from polygons problem.

74

Chapter 7

Conclustions.

7.1 Results

The Differential Evolution algorithm proved to be the best when solving the given numerical
and toy problems, with the Genetic Algorithms as a second best. The situation reversed itself
in the image from polygons problem.

The DA seems especially elegant in its simplicity with only two parameters to tune, as is the
Cross Entropy Method which also did comparatively well in numerical problems (although its
performance dropped substantially in the images from polygons problem).

In its basic form Taboo Search was third best, and very good results were also observed for
Particle Swarms and Cross Entropy Optimization.

Simulated Annealing deemed a very stable algorithm with a worst case performance compar-
ative to the worst case one. The algorithm didn’t fare well in the numerical problems but flourished
in the image generation problem.

7.2 Further Studies

Although some basic insights were gained on choice of good parameters for algorithms that should
give a good starting point for future researchers, they may be inconclusive for tougher/real life
problems and further inquiry/statistical analysis may confirm or refute these “rules of a thumb’.

Meta-optimization could be used to find the best set of parameters to specialized real-life
applications or more general good values of parameters.

With regard to the optimization library - more algorithms could be incorporated and analyzed
throughly - such as the Firefly Algorithm similar to Particle Swarms, the Ant Colony Opti-
mization, various memetic and Culture Based algorithms. With a standard base for developing
algorithms hybrid approaches to optimization can be developed.

Further inquiry about parallelization of implemented algorithms can be also sought, as can be
the use of distributed systems for dividing the work load. One can speculate about the hybrid
approaches to distributed systems with populations or swarms broadcasting best found solutions –
exploring independently but sharing work-load and knowledge.

75

Bibliography

[1] Jonathan E. Rowe Colin R. Reeves. Genetic Algorithms: Principles and Perspectives. A Guide
to GA Theory. Klutwer Academic Publishers, 2009.

[2] John Tsitsiklis Dimitris Bertsimas. Simulated annealing. Statistical Science, 8(1):10–15, 1993.

[3] Dr. Zong Woo Geem. Harmony search. http://www.hydroteq.com, September 2010.

[4] Abdel Rahman Hedar. Global optimization test problems. http://www-optima.amp.i.
kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm, October 2010.

[5] Thomas Weise. Global Optimization Algorithms - Theory and Application. Self-Published,
second edition, June 26, 2009. Available online at http://www.it-weise.de/.

[6] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE Transactions
on Evolutionary Computation, 1(1):67–82, April 1997.

76

Appendix – included files

Files included with this work are organized in a hierarchy:

/output.csv
/jgol/

This includes the log output and the contents of the jgol optimization library.

7.3 Log output

The /output.csv file contains comma separated values and an additional header describing the
field names:

"algorithm_name","problem_name","iterations","ms","n_eval","fitness","proximity"

The file was generated from last entries of multiple log files produced by the test problems
project; additionally the values of five run times were averaged.

The algorithm name field contains a string describing the algorithm in the format:

${PREFIX} (${parameter 1} = ${value 1}, ...) PS = ${POPULATION_SIZE}

Additionally some parameters may be boolean only; for example:
GA (elitism, sel = Tournament (count = 2, size = 2), cross = 1-Point (rate = 1.0), mut
= (mut-size = 1.0, mut-rate = 0.1) PS = 25

7.4 The jgol optimization library

The jgol optimization library is organized as a standard Netbeans project:

jgol/
|+build/
|+dist/
|+lib/
|+nbproject/
|+problems/
|+src/
|-build.xml
|-CHANGELOG
|-LICENSE
‘-TODO

77

The lib/ directory contains libraries used by the optimization library or the problems project.
One library used by the problems project, the java OpenGL wrapper (jogl) works correctly only
on a Linux x86 64 system (as it uses native binaries).

The problems/ directory contains the test project utilizing the jgol optimization library, and
implementing the optimization problems described in this work.

By default running the problems project will try solve the test benchmarks with every com-
bination of algorithm and algorithm parameters that was described in this document. Be wary,
because this may take a very long time (about 30 days of real time work for the system described
previously in section 5.5.1).

The log files generated by the problems project are similar to the output.csv file, but lacking
the header, and with one additional field:

"algorithm_name","problem_name","run","iterations","ms","n_eval","fitness","proximity"

The run field is a sequence number 1–5 discerning which run does the value belong to.
Additionally, the files logged, are more verbose logging every registered improvement of the

fitness function.

78

