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Nomenclature

W (l) the weight matrix associated with layer l.

b(l) the bias vector associated with layer l.

sl the size of the layer l.

nΩ the number of layers of a neural network.

x the input set.

y the label set.

x(i) i-th input vector.

y(i) i-th label vector.

a(l) activation of layer l.

σ(•) sigmoid activation function.

g(•) softmax activation function.

J(•) the model error function.

hW,b(•) the hypothesis of the model.

λ the weight decay parameter.

ρ the sparsity parameter.

ρ̂ the empiric sparsity of a network.

β the sparsity weight.

∆ stopping parameter.

ConvNet convolutional network

ti non-labeled training data for the n-stage deep network.

t̂i non-labeled training data for the n-stage autoencoder in Architecture-II.
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Introduction

Computer Vision problems are among the better studied problems of machine learning. The most
common dilemma of these methods is the choice of features we use to train the classifier. In
this paper we describe how to implement two architectures of neural-network based classifiers that
find good features automatically. The classifiers are tested on a very popular digit recognition
benchmark and compared to state-of-the-art results as well as naive classification methods that do
not use features.

The aim of this work was twofold. The first goal was to show that the methodologies
similar to the ones used in [LRM+12] can be applied to solve machine learning problems
on commodity hardware. The second goal was to implement a deep-learning algorithms
from scratch. Both of those goals were completed successfully.

This thesis consists of five chapters. The first chapter introduces the theory and motivation behind
deep learning and techniques used in this work. In the second chapter we present the data set used to
validate the accuracy of the learning models introduced in the next chapter. Thus, the third chapter
presents the architectures of two learning models, their parameters and training methodology. The
fourth chapter presents an analysis of the obtained results and compares them to state-of-the-art and
naive training methods. The fifth chapter summarizes this thesis and discusses possible future work.
Finally, the implementation details of the library and brief usage guide is given in the appendix.

Keywords: Computer vision, machine learning, classification, neural networks, deep learning,
convolutional networks, pooling, MNIST.
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Chapter 1

Theoretical Background

1.1 Image Recognition and Learning Models
Image recognition problems such as handwritten digit classification require the interpretation of
images. Usually, computer algorithms used for image interpretation do not base on raw pixel values
but use some intermediate higher level representation [Ben09, p. 3] such as SIFT [Low99] or HoG
[DT05]. The same algorithm of decomposing a problem into subproblems was observed in humans
as a way to solve complicated tasks [Ben09, p. 3] [Hin10, p 177].
Let X ∈ Rp denote a real valued random input vector and Y ∈ R a real valued random output
variable. A learning model, or a predictive model, is a function f(X) that predicts Y based on
X given as an input [HTF09, p. 18]. We can judge how well a learning model works using a loss
(or error) function which penalizes errors in prediction.
We will consider a learning model which uses decomposition to solve image recognition tasks. But
first we need to introduce artificial neural networks which the models are based on.

1.2 Artificial Neural Networks
The term neural network encompasses a large class of models and learning methods [HTF09, p.
392]. The central idea is to extract linear combinations of the inputs as derived features and then
model the target as a nonlinear function of these features [HTF09, p. 389].
A feedforward neural network of depth n is a n-stage regression or classification model, typically
represented by a network diagram [HTF09, p. 392] such as the one in figure 1.1. Stages in the
learning model correspond to layers in the neural networks. The units of the neural network, or
neurons, are connected to each other layer-wise.
We will represent those connections as a matrix of weights W (L). Where W (L)

ij is the weight of the
connection between the unit i in the layer L and unit j in the layer L+ 1. We will assume that the
layer W (1) is at the bottom and the layer with the highest index is at the top. Each layer in the
neural network has a size (the number of neurons) denoted as si where i = 1 . . . nΩ and nΩ is the
index of the last layer. We also add a ’special’ bias unit to each layer which always equals 1.

1
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x1 f1(•)

x2 f2(•)

x3 f3(•) y1

x4 f4(•)

1 f5(•)

1

W (1)1,2

b
(1)
5

Figure 1.1: A feedforward neural network with 4 input units, 5 hidden units, and 1 output unit.
Biases are represented as additional units with constant input set to 1. The layer sizes are: s1 = 5,
s2 = 6, s3 = snΩ = 1. The weight W (1)

1,2 and the bias b(1)
5 weight are highlighted. fi i = 1 . . . 5

correspond to activation functions (see below).

When modeling K-class classification with neural networks 1 , the resulting network should have
K units at the top layer, with the k-th unit modeling the probability that the input belongs to class
k [HTF09, p. 392]. The units in the middle layers of the network are called hidden units. [HTF09,
p 394].
The outputs of layer l are called activations and are computed based on linear combinations of
inputs and the bias unit[HTF09, p. 392] in the following way:

a(l) = f (l)(z(l))

where
z(1) = W (1)x+ b(1)

z(n) = W (n)a(n−1) + b(n) ∀n = 2 . . . nΩ

, W (l) is the matrix of weights of layer l, and b(l) is the vector of bias weights (or simply biases) of
layer l, and the function f (l) : Rsl → Rsl is an activation function. Althought in theory we could
use different activations functions for each neuron (like shown in figure 1.1) in practice only one
type of activation function for each layer is used. We will use two types of activation functions, a
non linear sigmoid activation function:

σ(z)(l)
i = 1

1 + e−zi
∀i = 1 . . . sl, l = 1 . . . nΩ

and the soft-max activation function used as the last layer (classifier) for K-class classification:

g(zk) = ezk∑K
i=1 e

zi
∀k = 1 . . .K

where z is a vector, and k is the class index. A neural network with an input layer and a softmax
layer (a layer with the softmax activation function) forms a softmax classifier.

1Classification where the possible number of classes is K
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A neural network has to be trained (weights and biases have to be found) to fit the training
data. Typically, when training feedforward networks we use an average sum-of-squared errors as an
error function which has to be minimized [HTF09, p. 395]:

J(W, b) = 1
m

m∑
i=1

(1
2

∥∥∥hW,b(x(i))− y(i)
∥∥∥2
)

where m is the training set size, x(i) is the i-th training sample with the label y(i), and hW,b(·)
returns the output of last layer of the network.
To prevent the network from overfitting the training data we add a regularization term controlled
by λ (called weight decay). It has been shown that such a factor keeps the weights small and
decreases overfitting [HTF09, p. 398].
The error function with regularization applied to the last layer looks as follows:

Jregularized(W, b) =
[

1
m

m∑
i=1

(1
2

∥∥∥hW,b(x(i))− y(i)
∥∥∥2
)]

+ λ

2

snΩ−1∑
i=1

snΩ∑
j=1

(
W

(nΩ−1)
ji

)2

The gradient of the error function (needed for optimization) can be calculated using the chain
rule for differentiation [HTF09, p. 395]. Using the stochastic gradient descent algorithm (sometimes
called backpropagation algorithm in the context of neural networks [HTF09, p. 395]), or some other
optimization method we can find the minimum of the error function, and thus the best parameters
for the network.

1.3 Deep Neural Networks and Deep Learning
As it turns out, deep (meaning with more then 1-2 hidden layers) vanilla2 neural networks perform
worse than neural networks with one or two hidden layers [Ben09, p. 6, 31]. While in theory deep
neural networks have at least the same expressive power as shallow neural networks [Ben09, p.32],
and can learn complex hierarchies of features, in practice we find that they are prone to being
stuck in local minima during the training phase. That’s why deep vanilla neural networks are not
appropriate candidates for a learning model that uses decomposition.
Fortunately, in 2003 Hinton et al. introduced Deep Belief Networks [HOT06] which use Restricted
Boltzmann Machines - a variant of neural networks with stochastic binary units [HOT06, p. 2-3]
that overcome the training problems of vanilla neural networks. For this purpose, they proposed a
layerwise training algorithm which greedily trains one layer at a time - which exploits an unsuper-
vised learning algorithm for each layer [HOT06, p 5]. The details of the greedy layerwise training
protocol will be discussed in chapter 3. Shortly after, related algorithms based on auto-encoders
were proposed [Ben09, p. 6].

1.4 Autoencoders and Sparsity
An autoencoder is a neural network (see Fig. 1.2) that is trained to encode an input x into some
representation c(x) so that the input can be reconstructed from that representation [Ben09, p. 45].
While the identity function - copying inputs to outputs - is not a useful function to learn, we can
add additional constraints on either the network, or the error criterion in hopes that the network
captures some useful features of the input [Ben09, p. 45] (in contrast a vanilla neural network with
s1 ≤ s2 would probably just learn the identity function).

2Neural networks trained using only backpropagation.
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x1 x̂1

σ(•)
x2 x̂2
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1
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1

Figure 1.2: An example of an autoencoder with 5 input units and 3 hidden units (features).

After successful3 training, the autoencoder it should decompose the inputs into a combination of
hidden layer activations. In this context we say that a trained autoencoder has learned features.
The amount of features is equal to the amount of neurons in the hidden layer.
One possible constraint is to enforce network sparsity. We can measure the average activations of
the neurons in the second layer:

ρ̂j = 1
m

m∑
i=1

[
a

(2)
j (x(i))

]
∀j = 1 . . . s2

and add a penalty to the error function which will prevent the activations from straying too far from
some desired mean activation ρ (the sparsity parameter). The resulting autoencoder is called a
sparse autoencoder.
One candidate for the penalty function is the Kullback-Leibler divergence:

KL(ρ||ρ̂) =
s2∑

j=1
ρ log ρ

ρ̂j
+ (1− ρ) log 1− ρ

1− ρ̂j

which penalizes ρ from straying too far from ρ̂ as seen in figure 1.3.
3The training may be unsuccessful if the input data is random and highly uncorrelated - the network will not

deduce any useful generalization in that case.
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Figure 1.3: The KL penalty function for ρ = 0.1

An error function which uses both the sparsity constraint and regularization can be expressed as:

Jsparse(W, b) = Jregularized(W, b) + β ·KL(ρ||ρ̂)

where β is called the sparsity constraint and controls the sparsity penalty.
We can train layers of autoencoders using the greedy layerwise training algorithm similar to training
deep belief networks: we train the first autoencoder using unsupervised learning, then we use the
hidden layer activations as inputs for the second layer, and so forth.

1.5 Convolutional Networks
Another type of deep neural networks that perform better then vanilla neural networks are convo-
lutional neural networks or ConvNets [Ben09, p 43]. ConvNets are inspired by the human visual
systems structure and work by exploiting local connections [Ben09, p. 43-44] through two opera-
tions - convolution and sub-sampling/pooling.

1.5.1 Convolution

“Convolutional neural networks are organized in layers of two types: convolutional layers and sub-
sampling layers. Each layer has a topographic structure, i.e., each neuron is associated with a fixed
two- dimensional position that corresponds to a location in the input image, along with a receptive
field (the region of the input image that influences the response of the neuron). At each location of
each layer, there are a number of different neurons, each with its set of input weights, associated with
neurons in a rectangular patch in the previous layer. The same set of weights, but a different input
rectangular patch, are associated with neurons at different locations. [...] One untested hypothesis is
that the small fan-in of these neurons (few inputs per neuron) helps gradients to propagate through
so many layers without diffusing so much as to become useless.” [Ben09, p. 44]
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The convolution operation can be imagined as convolving an image with a neural network (or a
single layer) - analogously to convolving an image with some function. The windowed input is fed
to the neural network:

∀i = 1 . . .width(sample) · height(sample)
∀r = 1 . . . Y
∀c = 1 . . . X

x̂(r, c)i = image
(
r +

⌊
i

width(image)

⌋
, c+ mod(i,width(image))

)
ar,c = nnet(x̂(r, c))

producing an output matrix of activation vectors (illustrated in figure 1.4):
a1,1 a2,1 a3,1 . . . aX,1
a1,2 a2,2 a3,2 . . . aX,2
... . . . · · ·

a1,Y a2,Y a3,Y . . . aX,Y


where:

X = width(image)− width(sample) + 1
Y = height(image)− height(sample) + 1,

mod(x, y) is the result of modulo division, and nnet(x) is a function that returns the activation of
the last layer of a neural network given the input.
Once again we assume that s1 is the size of the input layer of the ConvNet, snΩ is the size of the
output layer with nΩ being its index. Additionally, both sample and image are rectangular regions
but the input itself is flat (a vector of Rs1) and has to be converted. The conversion function will
be called flatten.
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a1,1 = [a1,1,1, a1,1,2, . . . , a1,1,snΩ
]

a2,1 = [a2,1,1, a2,1,2, . . . , a2,1,snΩ
]

a3,1 = [a1,3,1, a1,3,2, . . . , a1,3,snΩ
]

Convolve the image
with the neural network.

. . .

Figure 1.4: Example of the convolution process. The vector of activations ai,j corresponds to the
output of the neural network and consists of values ai,j,1 through ai,j,snΩ

1.5.2 Pooling

Another operation used by ConvNets is pooling (See Fig 1.5). Pooling is a biologically inspired
operation that reduces the dimensionality of the input [SCL12, p. 2]. Consider a matrix I: m × n,
pooling applies some operation to the values of the matrix in a spacial neighborhood. For a rect-
angular neighborhood r× r the output matrix size will be bm

r c × b
n
r c

4. A single cell of the output
matrix is calculated as follows:

∀y = 1 . . .
⌊
m

r

⌋
∀x = 1 . . .

⌊
n

r

⌋

Oy,x = lim
p→P

 r∑
i=1

r∑
j=1

I (i+ yr, j + xr)p ×G(i, j)

 1
p

where G is the gauss kernel I is the input matrix. The actual implementation uses P = ∞ which
corresponds max operation (see also footnote 4, and figure 1.5). This variant of pooling is called
Lp-pooling.

4 The actual implementation simulates max-pooling by using the maximum of activations (for efficiency reasons
the kernel operation is omitted). Because of this it is possible to preserve the edges and the actual size is dm

r
e × dn

r
e
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Figure 1.5: The pooling operation decreases the amount of features of each input source region (also
called the receptive field).

This decreases the number of trainable parameters and exploits locality - only the most prominent
features from a region are picked and given as the output.

1.5.3 Convolutional and Pooling Layers

Conceptually pooling and convolution may be modeled by layers: the convolution operation can be
viewed as a not-fully connected layer5. Pooling can also be expressed as a not fully connected layer
– where the Lp-pooling operation is the activation function, and the output layer size is dependent
on pooling size.

1.6 Related Work
The methods and architectures used in this work are heavily inspired by two papers: “Building
High-level Features Using Large Scale Unsupervised Learning” [LRM+12] and “Convolutional Neu-
ral Networks Applied to House Numbers Digit Classification” [SCL12]. In this paper we use smaller
datasets and simpler algorithms. By this virtue the presented methods are more suited to exper-
imentation on commodity hardware. Especially in contrast to the team behind [LRM+12] which
used a cluster consisting of 1000 computers with 16 cores each. One of the objectives of this work is
to show that deep learning using simple architectures and small datasets is possible without clusters
of high-end computers.

5And non-fully-connected layers can be viewed as layers with some weights always equal to 0



Chapter 2

Problem Formulation

2.1 MNIST
The MNIST [LC] data set of handwritten digits is a very popular benchmark for image recognition
tasks. It has a training set of 60,000 examples, and a test set of 10,000 examples. The images are
28× 28 in size, the amount of images belonging to a specific class is presented in table 2.1.

k training test
0 5923 980
1 6742 1135
2 5958 1032
3 6131 1010
4 5842 982
5 5421 892
6 5918 958
7 6265 1028
8 5851 974
9 5949 1009

Table 2.1: The amount of images belonging to the class k in the training and test sets.

9
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Figure 2.1: Samples from the MNIST training set. The number on the axes correspond to pixel
coordinates.

We will consider the quality of digit classification on the MNIST data set using the provided test
set. The classification accuracy will be expressed as a ratio of correctly classified digits to the size
of the test set.
Because of its popularity the MNIST data set is a de facto standard benchmark for learning methods.
The official MNIST website [mni] contains a list of learning models along with a error rate on the
provided test set. Some of those methods worked on a different version of the data set: “Some
of those experiments used a version of the database where the input images where deskewed (by
computing the principal axis of the shape that is closest to the vertical, and shifting the lines so as
to make it vertical). In some other experiments, the training set was augmented with artificially
distorted versions of the original training samples. The distortions are random combinations of
shifts, scaling, skewing, and compression.” [mni]. Those experiments may have a better performance
compared to methods that did not use an augmented test set or data preprocessing (a common
heuristic to improve a model performance is to increase the amount of training data).
Currently the state-of-the-art method is a committee of 35 ConvNets with the architecture that
starts with an input layer, followed by a convolutional layer with 20 maps (the amount of convo-
lutions), followed by a pooling layer, a convolutional layer with 40 maps, a pooling layer, a fully
connected layer with 150 neurons and an output layer with 10 outputs (one per class). For future
reference the network will be summarized as: 1-20-P-40-P-150-10. The networks were trained on a
training set with elastic distortions and width normalization We perform experiments on the origi-
nal and six preprocessed datasets. [...] we [...] normalize the width of all characters to 10, 12, 14,
16, 18 and 20 pixels [CMGS11]. Each member of the committee was trained on different image
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resolution, the whole model was trained on a super-computer with 4 GPUs.
We will also compare the results of this thesis to simpler networks such as a 2 layer neural network
with 300 hidden units, a softmax classifier and a linear classifier (which can be thought of as a one
layer neural network with a linear activation function).
The results of the above methods are shown in chapter 4, along with our results.



Chapter 3

Methodology

In this chapter we will describe the architectures and methods used to classify the images from the
database presented in the previous chapter.

3.1 Training Parameters and Network Topology
The parameters of both architectures were chosen heuristically – the sparsity parameter ρ, sparsity
weight b, and weight decay parameter λ was chosen after some initial experiments on a small set
of the MNIST data. The stopping criterion ∆ was chosen after training the first autoencoder for
Architecture-I – and motivated mostly by diminishing returns in further optimisation.
The topology for Architecture-I was motivated mostly by ease of training autoencoders – 200 deemed
a good number of features for 28×28 images, and in practice training the autoencoders wasn’t very
time consuming.
The topology for Architecture-II was chosen to preserve as much data as possible while at the same
time presenting the methodology. Subimages of size 7 × 7 were chosen over size 5 × 5 for the first
stage autoencoder based on softmax classifier performance on the training data.
Further information about the parameters and topology is given in the following sections.

3.2 Architecture-I – Stacked Autoencoders
First, we consider a simple architecture built of stacked autoencoders. The fully trained model built
by stacking parts of autoencoders can be summarized as a 784–200–200–200–10 deep network (see
figure 3.6).

3.2.1 Greedy layerwise training

The greedy layerwise training protocol can be summarized as follows: to construct a deep pretrained
network of n layers we divide the learning into n stages. In each stage we exploit an unsupervised
training algorithm: in the first stage we train an autoencoder on the provided training data sans
labels. After traning the resulting autoencoder will learn the features of this data. Next we map
the training data to the feature space (in practice by cutting out the last layer of autoencoder so
that inputs are mapped to hidden layer activations – features). The mapped data is then used to
train the next stage autoencoder. The training follows layer by layer until the last one. The last
layer is trained as a classifier (not as an autoencoder) using supervised learning.

12
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3.2.2 Training Protocol

The first stage autoencoder (see figure 3.1) is trained on t∗: the first 30000 images (out of 60000)
taken from the training set x (which we will name t1).

t∗ 784 200 784

Figure 3.1: Training the first stage autoencoder

After training the first network we strip out of the last layer obtaining the network n1 (see figure
3.2). We then obtain the activations of the network for the next stage training data (we call them
t2 see figure 3.3).

784 200 784

784 200

Figure 3.2: The network n1

t1 784 200 t2

Figure 3.3: Obtaining the training data t2

Similarly as before, we use the training data t2 to train a new neural network n2 with 200 input
units, and 200 feature units (and 200 output units which will be stripped out after the unsupervised
training phase). Once again, we map the training data t2 to the network activations resulting in
training data t3 (see figure 3.4).
We continue this protocol for the third stage of the network, obtaining the network n3 and training
data t4 (see figure 3.4).
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ti 200 200 200

200 200 200

200 200

ti 200 200 ti+1

Figure 3.4: Training, and training data acquisition for stages 2 and 3 (i = 2, 3)

For the final stage of the network we concatenate the training data t4 with the corresponding labels
from the training set and train a softmax classifier n4 with 200 input units and 10 output units (see
figure 3.5).

(t4, y) 200 10

Figure 3.5: Training the softmax classifier.

After training the last stage, the networks n1 through n4 are stacked to form a deep neural network.
It turns out that, although training deep networks is very hard and prone to be stuck in local optima,
the network that has been pre-tranied by the greedy layerwise training algorithm doesn’t suffer as
much from the non-convexity. We use the full training set (images and labels) to train the deep
neural network – we call this final step fine-tuning (see figure 3.6).

(t1, y) 784 200 200 200 10

Figure 3.6: Fine-tuning the deep network.

3.2.3 Training Parameters and Methods

All autoencoders were trained using the sparsity parameter ρ = 0.1, sparsity weight β = 3.0, and
the weight decay parameter λ = 0.003. Sparse backpropagation algorithm was implemented to
find the network gradients and verified with numerical results obtained using the finite difference
method1.
Optimization of autoencoders was done with L-BFGS [Noc80] which is a quasi-Newton method of
optimization with good memory characteristics. The networks were improved iteratively, and in

1A numeric method for finding the derivative of a function using the n-dimensional generalization of the approxi-
mation: f ′(x) ≈ f(x+h)+f(x−h)

2h
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each iteration i the representation error ei was measured. The optimization was stopped if criterion
of ∆ = |ei − ei−1| < 0.0001 was satisfied.
The softmax layer, as well as the final deep network were optimized with the help of L-BFGS
algorithm and with the stopping criterion of ∆ < 0.0001. As previously with the autoencoders,
the gradients obtained by the optimization algorithms were verified against the numerical gradient
using the finite differences method.
In addition to training the 784-200-200-200-10 (or three stage) model, simpler models were also
trained for comparison - a two stage 784-200-200-10 model and a one stage 784-200-10 model.

3.3 Architecture-II – Stacked Convolutional Autoencoders
Architecture-I presented in the previous section suffers heavily when the size of the image becomes
large e.g. when training on images of size 196× 196, an autoencoder with 200 features has approx-
imately 7.5 · 106 trainable parameters. This is almost 30 times more than the full 3 stage network
from Architecture-I.
To alleviate this problem we propose an architecture that can scale well with the image size. Instead
of training the network on the full image we can exploit local connectivity via convolutional networks,
and additionally restrict the number of trainable parameters with the use of pooling.

3.3.1 Training Protocol

Note: We will reuse symbols for networks ni, i = 1, 2 and training sets t1. Additionally we discern
between the ‘full’ training sets i.e. t1 and autoencoder training sets i.e. t̂1.
To create the training set t̂1 (see Fig 3.7) we sample randomly from the MNIST training set and
take a random 7 × 7 sub-images from the selected image. We draw 10000 of such sub-images and
ensure that no duplicates were drawn.
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Sample a random image from the training set

Take a random subsample

Figure 3.7: Sampling random sub-images for the first training set t̂1.

We then train the neural network on the t1 set similarly like we did in architecture-I using 200
hidden neurons (see figure 3.8)
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t̂1 49 200 49

Figure 3.8: Training the first stage autoencoder. The network n1 is built from the first two layers
of the autoencoder (omitted for brevity).

To create the t2 data we convolve the training data from the MNIST t1 with the first stage au-
toencoder obtaining a set of 22 × 22 matrices. The data is then max-pooled with pooling-size 2
creating a set of 11×11 matrices (see figure 3.9). To create the autoencoder training data t̂2 random
5× 5 sub-matrices are selected from the t2. As before we sample 10000 such data points and avoid
duplicates.

t1

convolve pool t2

49 200

Figure 3.9: Obtaining the traning data t2.

The next stage autoencoder is then trained with 100 hidden units. The data then passes through
a max-pooling layer with pooling-size 2, shrinking it down to matrices with size 7 × 7. The final
stage of the network consists of a softmax classifier similarly as in Architecture-I (see figure 3.10).
The final matrix of activation is flattened to a single vector.
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t1
22 × 22 matrix of
7 × 7 activations

11 × 11 matrix of
7 × 7 activations

7 × 7 matrix of
5 × 5 activations

4 × 4 matrix of
5 × 5 activations

10

convolvepool pool flatten

Figure 3.10: The full Architecture-II model.

As before the network needs to be fine-tuned after pre-training. Unlike convolutional networks
we keep a matrix of layer weights in the convolutional layer i.e. the weight parameters
aren’t shared at different locations in the image. This is similar to the training method proposed
by [LRM+12, p. 4].

3.3.2 Training parameters and Methods

To train the autoencoders for Architecture-II the same parameters and stopping criteria were used
as in Architecture-I. Where possible, L-BFGS was used for optimization, but due to memory con-
straints the full networks were optimized using the momentum method2 with batch-learning (the
momentum coefficient was set to a standard 0.9).
In addition to training the two stage model, a one stage model was also trained for comparison.

3.4 Visualizing features
To gain a better understanding of the features learned by the first stage autoencoder we can visualize
them by finding what features cause the neuron to activate. Activation of the hidden unit i is
calculated as follows:

ai(x) = f(
s2∑
j

W
(1)
ji xj + b

(1)
i )

To visualize the neuron of an autoencoder we find an input x that maximizes the function a. To
obtain a nontrivial answer to the above equation we constrain the input x by its norm ‖x‖ ≤ 1.
The input x that maximizes the activation of hidden unit i is given by setting xj to [vis]:

xj =
W

(1)
ij√∑N

j=1(W (1)
ij )2

∀j = 1, . . . , N

2We use an axillary momentum vector which continually adds a fraction of the previous gradient to the current
one. This improves convergence by diminishing random walks – see [IM02] for the improved version of the algorithm.
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Results

The experiments were performed on a machine with a Intel R© CoreTM i7-3632QM @ 2.2GHz CPU
with 4 cores (8 threads due to hyper-threading), and 16 GB of RAM. The results for Architecture-I
were calculated in a 24 hour period, but fully optimizing Architecture-II took about 3 weeks of real
time work.

4.1 Unsupervised Learning
After training the autoencoders with full images we can visually verify the training quality. White
regions of the visualization indicate positive correlation between the activation and input, while
black regions indicate negative correlation. The gray regions can be thought of as “don’t care”
values. As seen in figure 4.1 when trained on full images the autoencoder learned to recognize shapes
that are similar to pen strokes (which shows that the autoencoder decomposed the handwritten
digits down to a very characteristic fragments). In contrast in figure 4.2 when trained on sub-
images, the resulting autoencoder recognizes various edges of an image.

4.2 Supervised Learning
The results for both architectures were collected in table 4.1.

Stages Accuracy

Architecture I
1 95.16% (93.37%)
2 97.05% (86.72%)
3 98.35% (11.03%)

Architecture II 1 93.11% (91.08%)
2 94.36% (89.99%)

Table 4.1: Classification accuracy for both architectures as measured on the MNIST test set. The
number in parentheses indicate classification accuracy before fine-tuning.

19
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Classifier type Accuracy
Linear classifier 88.00%
Softmax classifier 91.57%
2-layer neural network
300 hidden units
mean square error

95.30%

Committee of 35 ConvNet
1-20-P-40-P-150-10

99.77%

Table 4.2: Results for the state-of-the art and common learning methods.

We can compare the results to simple classifiers like a linear classifier (88% accuracy [LC]), or
softmax classifier (91.57% accuracy) trained on raw pixel values (see table 4.2). The hypothesis
from 1.1 that decomposition is key to better classification seems fully justified - the worst results
from each architecture are still better then using raw data.
The state-of-the-art result for the MNIST data set has 99.77% accuracy [LC]. The results for
Architecture-I are close to state-of-the-art performance and could probably be improved with careful
choice of network parameters (the amount of layers and number of neurons in each layer, the
sparsity parameter and sparsity weight, as well as the regularization parameter). As expected the
classification accuracy increased with the number of stages of the network.
When comparing to other neural networks the results for Architecture-I are comparable to state-
of-the-art training methods, and much better then simple vanilla neural networks (95.3% accuracy
[LC]).
Classification accuracy of Architecture-II is comparable with vanilla neural networks. While it
seems that Architecture-II only introduced complexity with little accuracy gain we must remember
that the model was employed to alleviate problems with large scale images. Therefore, the model
may fare better when used on larger images. Like in case of Architecture-I and as suspected - the
results are better with more stages.
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Figure 4.1: Visualization of the first 100 neurons of the autoencoder trained on 28×28 images from
the MNIST training set. The numbers on the axes correspond to coordinates in the pixel domain.
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Figure 4.2: Visualization of the first 36 neurons of the autoencoder trained on 7×7 sub-images.The
numbers on the axes correspond to coordinates in the pixel domain.
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Conclusions and Future Work

In this work we explored the possibility of using deep learning on commodity grade hardware. The
results for Architecture-I are close to state-of-the art performance, and that suggests that deep
learning is a viable option even without clusters of (super-)computers.
The results of Architecture-II are close to results obtained with vanilla neural networks but in theory
could be used for images much larger in scale.

Future work could be put to verify that the Architecture-II model and methods used therein
are applicable for large scale images. While the model works properly on small scale images and
exhibits moderate accuracy characteristics it is still an open question if it performs equally well for
images bigger in resolution.

Parameters for the networks in this work were chosen somewhat haphazardly – we have not explored
fully the connection between model performance and the amount of stages, the amount of features
in each stage, and the sparsity parameter. Ideally those parameters should be chosen with respect
to their performance on a validation set (for example using cross validation). Due to expensive
computations needed to train each model, and the time constraints the parameters were chosen
heuristically. This aspect could be explored more thoroughly in future work.

Finally, apart from weight decay on the softmax classifier, no regularization methods were investi-
gated which could further improve classification accuracy.
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